Week1单变量线性回归

单变量线性回归

模型表示

以之前的房屋交易问题为例,我们根据之前的数据预测出一个准确的输出值,从而得到一个房子能卖多少钱。
在这里插入图片描述
这就是一个监督学习算法的工作方式,我们可以看到这里有我们的训练集里房屋价格 我们把它喂给我们的学习算法,学习算法的工作了,然后输出一个函数,通常表示为小写 h 表示。h 代表hypothesis(假设),h表示一个函数,输入是房屋尺寸大小,就像你朋友想出售的房屋,因此 h 根据输入的 x值来得出 y 值,y 值对应房子的价格 因此,h 是一个从x 到 y 的函数映射。
其中,假设函数h为:
h θ ( x ) = θ 0 + θ 1 x h_{\theta}\left( x \right) =\theta _0+\theta _1x hθ(x)=θ0+θ1x
由于仅有x一个输入变量,因此叫作单变量线性回归。

代价函数

对于回归问题,代价函数(cost function)通常选择平方误差函数:
J ( θ 0 , θ 1 ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J\left( \theta _0,\theta _1 \right) =\frac{1}{2m}\sum_{i=1}^m{\left( h_{\theta}\text{(}x^{\text{(}i\text{)}}\text{)}-y^{\text{(}i\text{)}} \right) ^2} J(θ0,θ1)=2m1i=1m(hθ(x(i))y(i))2
其中m为样本个数。
我们要做的便是找到一组参数 ( θ 0 ​ , θ 1 ​ ) \left( \theta _0​,\theta _1​ \right) (θ0,θ1),使得损失函数最小。

梯度下降

我们将使用梯度下降算法来求出代价函数 J ( θ 0 , θ 1 ) J\left( \theta _0,\theta _1 \right) J(θ0,θ1)的最小值。

步骤:
a. 初始化 ( θ 0 ​ , θ 1 ​ ) \left( \theta _0​,\theta _1​ \right) (θ0,θ1)为[0,0]的转置
b. 更新公式:
θ j : = θ j − α ∂ ∂ θ j J ( θ ) \theta _j:=\theta _j-\alpha \frac{\partial}{\partial \theta _j}J\left( \theta \right) θj:=θjαθjJ(θ)
在单变量线性回归问题当中:
梯度的求解公式: ∂ ∂ θ j J ( θ 0 , θ 1 ) = ∂ ∂ θ j 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 \frac{\partial}{\partial \theta _j}J\text{(}\theta _0,\theta _1\text{)}=\frac{\partial}{\partial \theta _j}\frac{1}{2m}\sum_{i=1}^m{\left( h_{\theta}\text{(}x^{\text{(}i\text{)}}\text{)}-y^{\text{(}i\text{)}} \right)}^2 θjJ(θ0,θ1)=θj2m1i=1m(hθ(x(i))y(i))2
具体的更新步骤:
θ 0 : = θ 0 − a 1 / m ∑ ( i = 1 ) m ( h θ ( x ( ( i ) ) ) − y ( ( i ) ) ) \theta _0:=\theta _0-a1/m∑_{\left( i=1 \right)}^{m}\left( h_{\theta}\left( x^{\left( \left( i \right) \right)} \right) -y^{\left( \left( i \right) \right)} \right) θ0:=θ0a1/m(i=1)m(hθ(x((i)))y((i)))
θ 1 : = θ 1 − a 1 m ∑ i = 1 m ( ( h θ ( x ( i ) ) − y ( i ) ) ⋅ x ( i ) ) \theta _1:=\theta _1-a\frac{1}{m}\sum_{i=1}^m{\left( \left( h_{\theta}\text{(}x^{\text{(}i\text{)}}\text{)}-y^{\text{(}i\text{)}} \right) \cdot x^{\text{(}i\text{)}} \right)} θ1:=θ1am1i=1m((hθ(x(i))y(i))x(i))

其中,α为学习率,一般我们会设定迭代次数,如1000次,如此可得迭代1000次所得的参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值