1.背景
在高水平英语考 试(如 托 福、雅 思、GRE 等)中,作 文 评 测 更 加 注重学生的结构表达,尤其是雅思考试,文章的结构表达在作文评分方面所占比重较大,因 此 篇 章 结 构 分 析 逐 渐 成 为 AES 系统中不可或缺的部分。
2.篇章成分的定义
作者分析了大量托福、雅思以及 GRE 的 Argument官 方 范 文 和 应 考 学 生 的 文 章,依托真实托福应考学生的300篇议论文,总结出中国 学 生 撰写议论文的特点;并结合议论文的5个要素,即论点、理 由、论据、结论和论证,将 篇 章 成 分 划 分 为 9个细粒度类别标签。
3.贡献
- 通过细粒度对文章进行划分,并自建数据集
- 考虑了中国学生得写作特点
- 对细粒度的篇章成分进行识别(创新点)
4.方法
4.1 篇章成分分析
通过3位专家,进行手工评分。第 三 位 专 家 的 标 注 结 果与前两位专家中的某一位的 标注结果一致,则该句子的最终标注为个相同 的 标 注 结 果,否 则 由 3 位 专 家 仔 细 讨 论 后 再 给 出 该 句 子 最终的标注.
4.2 特征提取
这一部分包括以下三种特征的提取:
- 结构特征:词数特征,位置特征以及标点符号特征
- 词汇特征:n-grams、指 示 词、人 称 代 词、情 态 动 词 以 及 专 有 名词等特征
- 句法特征:使用 Stanford分析器构建句法分析树,并从中 提取树的深度作为句法特征。
4.3 篇章结构评分方法
- 基于随机森林的篇章成分识别模型
- 基于线性回归的篇章结构自动评分模型
5.结果
实验完整地 完 成了特 征提取、篇章成分识别以及篇章结构评分,并提高了篇章成分识别准确率和在背景介绍段、论证段及让步段上的篇章结构评分准确率。
ZHOU Ming,JIA Yan-ming,ZHOU Cai-lan,XU Ning. English Automated Essay Scoring Methods Based on Discourse Structure[J]. Computer Science, 2019, 46(3): 234-241. https://doi.org/10.11896/j.issn.1002-137X.2019.03.035
论文下载地址:https://www.jsjkx.com/CN/10.11896/j.issn.1002-137X.2019.03.035