八皇后问题(java版)

八皇后问题是一个古老又充满趣味的问题,想搜到这里的,想必知道什么是八皇后问题,话不多说直接写题解吧,解法思路也直接写在代码中了,个人认为很好理解

代码

//解法:
/*
1.第一个皇后先放第一行第一列
2.第二个皇后放在第二行第一列,然后判断是否OK,如果不OK,继续放在第二行,第三列,依次把所有列都放完,找到一个合适
3.继续第三个皇后,还是第一列,第二列,....直到第8个皇后也能放在一个不冲突的位置,算是找到一个正确解
4.当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯,放到第一列的所有正解,全部得到
5.然后回头继续第一个放第二列,后面继续循环执行1,2,3,4的步骤
说明:理论上应该创建一个二维数组来表示棋盘,但是实际上可以通过算法,用一个一维数组即可解决问题,数组下标表示第几行,即第几个皇后,下标对应存放的数字表示第i+1个皇后,放在第i行的第val列
 */
public class Queue8 {
    //定义一个max表示有多少个皇后
    int max=8;
    //定义一个数组array,保存皇后放置位置的结果
    int []array=new int [max];
    static int count=0;//统计解法
    public static void main(String[] args){
        //测试
        Queue8 queue8=new Queue8();
        queue8.check(0);
        System.out.printf("一共有%d种解法",count);
    }
    //编写一个方法,放置第n个皇后
    //特别注意:check是每一次递归时,进入到check中都有for (int i=0;i<max;i++),因此会有回溯
    private void check(int n){
        if (n==max){//n=8,其实8个皇后已经放好了,因为n是从0开始的
            print();
            return;
        }
        //依次放入皇后,并判断是否冲突
        for (int i=0;i<max;i++){
            //先把当前这个皇后n,放到该行的第一列
            array[n]=i;
            //判断当前第n个皇后到i时,是否冲突
            if (judge(n)){
                //接着放n+1个皇后,即开始递归
                check(n+1);
            }
            //如果冲突,就继续执行array[n]=i,即将第n个皇后放置在本行的后移的一个位置
        }
    }
    //查看当我们放置第n个皇后时,就去检测该皇后是否和前面已经摆放冲突
    private boolean judge (int n){//n表示第n个皇后
        for (int i=0;i<n;i++){
            //1.array[i]==array[n] 表示第n个皇后 是否 和前面的n-1个皇后在同一列
            //2.ath.abs(n-i)==Math.abs(array[n]-array[i]表说第n个皇后是否和第i个皇后在同一斜线
            if (array[i]==array[n]||Math.abs(n-i)==Math.abs(array[n]-array[i])){
                    return false;
            }
        }
        return true;
    }
    //写一个方法,可以将皇后摆放的位置输出
    private  void print(){
        count++;
        for (int i=0;i<array.length;i++){
            System.out.print(array[i]+" ");
        }
        System.out.println();
    }
}

运行结果

在这里插入图片描述

解释一下:

例如7 3 0 2 5 1 6 4,意思是,第一个皇后放在第一行第7列(从0开始),第二个皇后放在第二行第3列,即数组下标表示第几行,第几个皇后,下标对应存放的数字表示第i+1个皇后,放在第i行的第val列,array[0]=7,就是第一个皇后,放在第0行第七列,同理可得其他

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值