群智能优化算法:
“群” 指的是自然界的群体,“智能” 指的是自然界的生物群体的生存和生活方式体现着一种智慧,“优化” 是一种数学问题,在既定约束下,对于某个目标寻找最优解决方案(最优值或得到最优值的最优参数),“算法” 即使用系统方法描述解决问题的策略机制,给定规范输入一定时间内获得所要求的输出。
核心含义:人们通过对一些自然中的生物群体行为特征(觅食、筑巢)的模仿,提出各种高效的优化算法。
寻优过程:通过设计一种无质量的粒子模拟动物群(事物群)中的个体(具有速度和位置属性,速度代表快慢,位置代表方向),个体在搜索空间中单独搜寻最优解,记为个体极值,并与其他个体共享,目标是找到最优的个体极值作为群体中的全局最优解,优化问题即是,个体根据自己的个体极值和当前群体中的全局最优解调整自己位置。个体之间存在竞争,迭代调整位置时最优个体会发生变化,直到达到设定的条件,停止迭代,此时的全局最优解作为目标值,我们关心的是寻优的速度(收敛速度)和避免陷入局部最优。
2.常见的群智能优化算法(待补充)
有主要蚁群算法和粒子群算法
其他:遗传算法,人工蜂群优化算法,细菌觅食算法,模拟退火算法,蜘蛛猴优化算法,布谷鸟搜索,萤火虫,天牛须搜索算法,蝙蝠算法,鱼群优化算法,蟑螂算法,猫群算法,烟花算法,鲸鱼优化算法,狩猎搜索,海豚回声定位算法,灰狼优化算法,麻雀搜索算法,果蝇优化算法,海鸥优化算法,食肉植物优化算法,人工鱼群算法..........
3.改进算法的三种类型的方法
通过初始化种群改进:种群个体具有随机性和不确定性,改进初始化种群的方式改善算法性能。
- 混沌映射:
- 反向学习
- 菜维飞行
策略优化个体迭代更新:
- 高斯游走策略(正态分布)
- 随机游走策略(布朗运动)
- 正余弦优化策略
- 自适应策略
- 变异扰动策略(柯西变异,差分变异)
混合算法
- 将两种算法的优点结合进行改进
然后就老老实实看文献,复现了。。。
论文中常用的改进群智能优化算法(100种改进算法、三类改进方法,干货收藏) - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/425439560
研究生如何一个月发表核心期刊论文(纯干货、硬核技巧) - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/420763509
小白一个,参照多篇,总结一下作为自己的学习规划,侵删(私聊我),勿喷!!!