群智能优化算法学习规划

本文介绍了群智能优化算法的基本概念,如蚁群算法和粒子群算法,并列举了一系列相关算法,如遗传算法和人工蜂群优化算法。讨论了算法的寻优过程和常见改进方法,包括混沌映射和策略优化个体迭代更新。同时提出了改进算法的三种类型,包括初始化种群优化、策略优化和混合算法。文章适合于研究和学习优化算法的研究生,提供了论文写作和学习规划的参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

群智能优化算法:

        “群” 指的是自然界的群体,“智能” 指的是自然界的生物群体的生存和生活方式体现着一种智慧,“优化” 是一种数学问题,在既定约束下,对于某个目标寻找最优解决方案(最优值或得到最优值的最优参数),“算法” 即使用系统方法描述解决问题的策略机制,给定规范输入一定时间内获得所要求的输出。

        核心含义:人们通过对一些自然中的生物群体行为特征(觅食、筑巢)的模仿,提出各种高效的优化算法。

        寻优过程:通过设计一种无质量的粒子模拟动物群(事物群)中的个体(具有速度和位置属性,速度代表快慢,位置代表方向),个体在搜索空间中单独搜寻最优解,记为个体极值,并与其他个体共享,目标是找到最优的个体极值作为群体中的全局最优解,优化问题即是,个体根据自己的个体极值和当前群体中的全局最优解调整自己位置。个体之间存在竞争,迭代调整位置时最优个体会发生变化,直到达到设定的条件,停止迭代,此时的全局最优解作为目标值,我们关心的是寻优的速度(收敛速度)和避免陷入局部最优。

2.常见的群智能优化算法(待补充)

有主要蚁群算法和粒子群算法

其他:遗传算法,人工蜂群优化算法,细菌觅食算法,模拟退火算法,蜘蛛猴优化算法,布谷鸟搜索,萤火虫,天牛须搜索算法,蝙蝠算法,鱼群优化算法,蟑螂算法,猫群算法,烟花算法,鲸鱼优化算法,狩猎搜索,海豚回声定位算法,灰狼优化算法,麻雀搜索算法,果蝇优化算法,海鸥优化算法,食肉植物优化算法,人工鱼群算法..........

3.改进算法的三种类型的方法

通过初始化种群改进:种群个体具有随机性和不确定性,改进初始化种群的方式改善算法性能。

  • 混沌映射:
  • 反向学习
  • 菜维飞行

策略优化个体迭代更新:

  • 高斯游走策略(正态分布)
  • 随机游走策略(布朗运动)
  • 正余弦优化策略
  • 自适应策略
  • 变异扰动策略(柯西变异,差分变异)

混合算法

  • 将两种算法的优点结合进行改进

然后就老老实实看文献,复现了。。。
论文中常用的改进群智能优化算法(100种改进算法、三类改进方法,干货收藏) - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/425439560

研究生如何一个月发表核心期刊论文(纯干货、硬核技巧) - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/420763509

小白一个,参照多篇,总结一下作为自己的学习规划,侵删(私聊我),勿喷!!!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Handsome_Zpp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值