paddle深度学习笔记一

从零开始深度学习–基于paddle–笔记1

线性回归模型

深度学习中的“hello word”。

深度学习就是通过已知求未知的过程。比如y=kx+b这个一次函数,起初并不知道y和x之间存在一定关系(线性关系),但是通过大量的x、y数据可以找出它们之间的规律,于是总结出十分接近y=k’x+b’的关系式,那么当有新的x时就可以通过总结式y=k’x+b’来预测出此时的y是多少。这个过程就是“深度学习”的极简缩略版。

“波士顿房价预测“模型就是深度学习中的”hello word“,波士顿当地房价由诸多因素影响,某个数据集统计了13种可能影响房价的因素(包括)和该类型房屋的均价,期望构建一个基于13个因素进行房价预测的模型,(这个模型是一种结构极简的线性回归模型)。也就是说用该数据集训练得到一个能偶预测房价的模型,得到模型之后我们输入一条数据,它能够输出一个预测的房价值,最后来观察预测值和真实值之间的差异。下面这张图是房价影响因素示意图(所有图片基本来自飞桨教程,飞桨教程真的做的很好)。

在这里插入图片描述

房价影响因素和结果呈现一种线性关系我认为可以这么描述y=f(x1,x2,…),用下图的公式1可以具体呈现出这种线性关系,它所表达的意义就是每一种影响因素对房价的影响有大有小,也就是占有不同的权重wj,所有因素的乘积之和加上一个偏置就能够得到房价,训练模型的过程其实就是去拟合wj和b。

从输入数据到得到预测值这个过程其实就是前向传播。得到预测值之后,预测值和真实值会存在一定差异,那么可以通过这个差异去评估预测值的好坏。这个差异如何衡量呢,可以用损失函数也就是loss来衡量。通过”差异“计算得到loss,那么也就可以得知loss越小,表明预测的越准,也就代表模型越好,本质上也就代表wj,b的准确性越高。计算loss的方法有很多,房价预测这里使用均方误差来计算。

另外,有了loss也可反向更新wj与b的值,更新的常用方法称为”梯度下降法“。可以这样理解,首先先选取一组随机数w1,w2作为参数的初始值,然后选取下一组数w1’,w2’使得L(w1′,w2′)<L(w1,w2),之后重复第二步直到loss不在下降。这就是反向传播。

在这里插入图片描述

详细的的计算过程在飞桨的官网上都有,十分详细。

使用paddle框架实现

我跟着教程使用paddle框架来完成这个房价预测模型的训练。训练的过程如下图。本教程中的案例覆盖计算机视觉、自然语言处理和推荐系统等主流应用场景,使用飞桨实现这些案例的流程基本一致。

在这里插入图片描述

那么接下来开始按照想法编码吧!

数据集准备

我是在本地跑的,没有用百度的notebook,所以我下载了csv格式房价数据到本地。然后来简单改写一下load_data函数,它的功能就是把所有数据进行划分划分为训练集和测试集。我把下面的函数写在了mmoel.py里。

datafile = "./price.csv"
global float_datafile
with open(datafile, mode="r", encoding="utf-8") as f:
    data_str = np.loadtxt(f, dtype=str, delimiter=",")
    print("data str \n", data_str)
    data = np.float32(data_str[1:])
    float_datafile = data
    print("data float \n", data)
    
def load_data():
    # 从文件导入数据
    # datafile = './work/housing.data'
    # data = np.fromfile(datafile, sep=' ', dtype=np.float32)
    data = float_datafile

    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
    feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE',
                     'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
    feature_num = len(feature_names)

    # 将原始数据进行Reshape,变成[N, 14]这样的形状
    # data = data.reshape([data.shape[0] // feature_num, feature_num])

    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    training_data = data[:offset]

    # 计算train数据集的最大值,最小值,平均值
    maximums, minimums, avgs = training_data.max(axis=0),         
    	training_data.min(axis=0), \
        training_data.sum(axis=0) / training_data.shape[0]

    # 记录数据的归一化参数,在预测时对数据做归一化
    global max_values
    global min_values
    global avg_values
    max_values = maximums
    min_values = minimums
    avg_values = avgs
    arg_values = [max_values, min_values, avg_values]

    # 对数据进行归一化处理
    for i in range(feature_num):
        data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])

    # 训练集和测试集的划分比例
    training_data = data[:offset]
    test_data = data[offset:]
    return training_data, test_data, arg_values

网络训练

训练的目的是找到合适的参数进行训练,那么要先定义好模型的输入是一组包含13个数的数据(输入维度为13),输出的是一个数代表预测的房价(输出维度是1)。用一个先线性关系式即可表示出(网络结构只有一层全连接层)。

在这里插入图片描述

加载好数据集之后,就可以一批一批的把数据喂给网络,所有数据训练完则代表完成了一轮训练。在这个房价预测模型我只训练10轮(10个epoch)。

在这里插入图片描述

等训练完毕把模型参数保存,这些都可用paddle的框架接口来实现。训练的过程如下,我将它们封装在train.py中。

# from pyexpat import model
from mmodel import *
import paddle.nn.functional as F

model = Regressor()
model.train()
training_data, test_data, arg_values = load_data()
# 定义优化算法,使用随机梯度下降SGD
# 学习率设置为0.01
opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())

EPOCH_NUM = 10   # 设置外层循环次数
BATCH_SIZE = 10  # 设置batch大小

# 定义外层循环
for epoch_id in range(EPOCH_NUM):
    # 在每轮迭代开始之前,将训练数据的顺序随机的打乱
    np.random.shuffle(training_data)
    # 将训练数据进行拆分,每个batch包含10条数据
    mini_batches = [training_data[k:k+BATCH_SIZE]
                    for k in range(0, len(training_data), BATCH_SIZE)]
    # 定义内层循环
    for iter_id, mini_batch in enumerate(mini_batches):
        x = np.array(mini_batch[:, :-1])  # 获得当前批次训练数据
        y = np.array(mini_batch[:, -1:])  # 获得当前批次训练标签(真实房价)
        # 将numpy数据转为飞桨动态图tensor的格式
        house_features = paddle.to_tensor(x)
        prices = paddle.to_tensor(y)

        # 前向计算
        predicts = model(house_features)

        # 计算损失
        loss = F.square_error_cost(predicts, label=prices)
        avg_loss = paddle.mean(loss)
        if iter_id % 20 == 0:
            print("epoch: {}, iter: {}, loss is: {}".format(
                epoch_id, iter_id, avg_loss.numpy()))

        # 反向传播,计算每层参数的梯度值
        avg_loss.backward()
        # 更新参数,根据设置好的学习率迭代一步
        opt.step()
        # 清空梯度变量,以备下一轮计算
        opt.clear_grad()

# 保存模型参数,文件名为LR_model.pdparams
paddle.save(model.state_dict(), 'LR_model.pdparams')
print("模型保存成功,模型参数保存在LR_model.pdparams中")

模型测试

测试流程可以大概分为:先加载一组测试集中的数据,然后加载好模型文件,最输入测试数据得到预测结果。测试部分封装为test.py。

from mmodel import *
# from mmodel import max_values, min_values

training_data, test_data, arg_vlues = load_data()


def load_one_example():
    # 从上边已加载的测试集中,随机选择一条作为测试数据
    idx = np.random.randint(0, test_data.shape[0])
    idx = -10
    one_data, label = test_data[idx, :-1], test_data[idx, -1]
    # 修改该条数据shape为[1,13]
    one_data = one_data.reshape([1, -1])

    return one_data, label


# 参数为保存模型参数的文件地址
model = Regressor()
model_dict = paddle.load('./LR_model.pdparams')
model.load_dict(model_dict)
model.eval()

# 参数为数据集的文件地址
one_data, label = load_one_example()
# 将数据转为动态图的variable格式
one_data = paddle.to_tensor(one_data)
predict = model(one_data)

#
max_values = arg_vlues[0]
min_values = arg_vlues[1]
avg_values = arg_vlues[2]

# 对结果做反归一化处理
predict = predict * (max_values[-1] - min_values[-1]) + avg_values[-1]
# 对label数据做反归一化处理
label = label * (max_values[-1] - min_values[-1]) + avg_values[-1]

print("Inference result is {}, the corresponding label is {}".format(
    predict.numpy(), label))

测试结果大致如下,可以看到模型推断的结果和真实的结果基本吻合。
在这里插入图片描述

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值