量化研究方法之结构方程模型(一)

本文将介绍结构方程模型(SEM)的基础知识,包括测量模型和结构模型的概念。作者将分享学习SEM的过程,从理论到实践,通过设计量表收集数据,评估和调整模型,以得出研究结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

## 结构方程模型学习之引言

从今天起,笔者将定期更新关于结构方程模型(SEM)的理论与实践。笔者也是刚入门结构方程模型,因此,这一系列的博文将详细记录笔者学习结构方程模型的学习经历,从最基础的知识讲起。第一篇博文首先简要说明什么是结构方程,接着介绍结构方程模型中的常见几种变量。
那么,什么是结构方程模型呢?结构方程模型从整体上看,包括两种模型:测量模型和结构模型。测量模型描述的是潜在变量如何被可测量、可观察的变量描述,而结构模型则是潜变量之间的关系的模型。运用结构方程进行研究的基本范式如下:

在这里插入图片描述
利用结构方程模型进行探究的一般步骤可以这样简单理解:首先,我们需要结合专业背景,并根据已有的研究,提出自己的理论模型。然后,根据模型设计相应的测量工具(即量表),当量表设计完成后,向我们的研究对象进行发放,进行数据的收集,根据数据,对我们提出的模型进行评估和调整,最终得出结论。

内容概要:本文档详述了套系统化的数据分析流程,旨在深入探讨新闻参与与媒体可信度间的关系及其受到直播等因素的影响。内容分为两大部分:是用户信息的统计分析部分,涵盖了性别、年龄、职业、教育、设备等多种属性的数据预处理、清洗以及可视化展示,并通过各类统计量描述样本的分布状况;二是基于结构方程模型的定量研究,从描述性统计出发,经历信度效度检测、验证性因子分析(CFA)直到最终建立起结构方程模型(SEM),对‘有无直播’这现象如何影响到‘媒体可信度’并进而作用于‘新闻参与’进行了严谨论证,还利用Bootstrap方法对潜在中介机制展开了探索。文中强调了科学合理的数据分析步骤对得出可靠结论的重要意义,同时提供了详尽的技术指导供使用者参考。 适用人群:高等院校社会科学研究者、数据分析师以及其他从事市场调研、社会科学量化研究的专业人士。 使用场景及目标:适用于希望通过数据挖掘揭示社会心理变量间深层联系的研究项目,特别是关注新闻传媒领域的专业人士,希望通过构建完善理论模型更好地把握观众心理特点发展趋势。 其他说明:文档不仅提供了详细的案例解析技术指南,而且融入了许多实用性的工具技术,包括数据清理技巧、频数统计的具体实施方式、以及高级多元统计模型的应用,使得读者能够在实际工作中灵活运用相关方法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值