416 分割等和子集

本文介绍了如何使用01背包的动态规划方法,通过一维滚动数组优化,解决LeetCode上的等值物品分割背包问题。核心思路是判断背包容量的一半是否可以被nums数组的元素整除,通过递推公式dp[j]=max(dp[j],dp[j-nums[i]]+nums[i])找到最大装填。
摘要由CSDN通过智能技术生成

https://leetcode-cn.com/problems/partition-equal-subset-sum/

在这里插入图片描述

思路:

  • 利用01背包动规解决;dp 数组的含义就是: 背包容量 j 能装的最大容量为 dp[ j ];
  • 背包重量就是数组和的一半;dp 递推公式是: dp[ j ] = max(dp[ j ], dp[ j - nums[ i ] ] + nums[ i ]); 考虑放不放当前的物品 i ,取价值最高的。
  • 其中 nums 的元素其价值和重量是等价的
  • 代码使用了一维滚动数组,其遍历顺序固定是先物品后背包,并且背包必须是倒序遍历,这样才能表示每个物品只能装一次。
class Solution {
    public boolean canPartition(int[] nums) {

        int sum = 0;
        for(int num : nums) sum += num;
        // 奇数分割不了两部分
        if(sum % 2 != 0) return false;
        int target = sum / 2;
        int[] dp = new int[target + 1];

        // 遍历物品
        for(int i = 0;i < nums.length;i++){
            for(int j = target;j >= nums[i];j--){
                dp[j] = Math.max(dp[j],dp[j-nums[i]] + nums[i]);
            }
        }
        
        return dp[target] == target;
    }
}

总结

问能否能装满背包(或者最多装多少): dp[ j ] = max(dp[ j ], dp[ j - nums[ i ] ] + nums[ i ]);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值