https://leetcode-cn.com/problems/partition-equal-subset-sum/
思路:
- 利用01背包动规解决;dp 数组的含义就是: 背包容量 j 能装的最大容量为 dp[ j ];
- 背包重量就是数组和的一半;dp 递推公式是: dp[ j ] = max(dp[ j ], dp[ j - nums[ i ] ] + nums[ i ]); 考虑放不放当前的物品 i ,取价值最高的。
- 其中 nums 的元素其价值和重量是等价的
- 代码使用了一维滚动数组,其遍历顺序固定是先物品后背包,并且背包必须是倒序遍历,这样才能表示每个物品只能装一次。
class Solution {
public boolean canPartition(int[] nums) {
int sum = 0;
for(int num : nums) sum += num;
// 奇数分割不了两部分
if(sum % 2 != 0) return false;
int target = sum / 2;
int[] dp = new int[target + 1];
// 遍历物品
for(int i = 0;i < nums.length;i++){
for(int j = target;j >= nums[i];j--){
dp[j] = Math.max(dp[j],dp[j-nums[i]] + nums[i]);
}
}
return dp[target] == target;
}
}
总结
问能否能装满背包(或者最多装多少): dp[ j ] = max(dp[ j ], dp[ j - nums[ i ] ] + nums[ i ]);