替代安全指标(Surrogate Safety Measures (SSM) )

本文探讨了SurrogateSafetyMeasures(SSM)作为一种评估交通设计和策略安全性的方法,通过分析与潜在碰撞相关的交通冲突,而非实际发生的碰撞。SSM的标准包括与碰撞直接关联的冲突以及冲突与碰撞频率和严重程度的量化关系。这种方法比依赖罕见的碰撞数据更公正,因为冲突事件更为频繁且可以提供及时的反馈。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

替代安全措施(Surrogate Safety Measures (SSM) )用于从数据中寻找接近碰撞,或可能发生(但实际没有发生)的碰撞事件。

SSM的两个合格标准:
(1)它应该来自与碰撞直接相关的交通冲突;
(2)交通冲突与相关潜在碰撞频率和/或严重程度之间的关系可以通过一些实用的方法来量化。

碰撞频率严重程度被认为是直接衡量设计、对策或系统安全性能的两个重要指标。然而,碰撞是罕见的事件。对于新的安全策略(例如,新的交通标志),它们的安全影响需要时间才能通过现实世界的碰撞频率和严重程度数据来揭示。

【通过查找到交通冲突事件来代替碰撞事件】
因此,依靠历史碰撞数据来评估安全策略的性能并不是最好的选择,在某种程度上是不道德的。为了解决这个问题,基于流量冲突的SSM已经成为一种越来越流行的解决方案。交通冲突是可观察到的非碰撞事件,其中多个道路使用者在空间和时间上的相互作用,如果这些用户不改变他们的运动路线,就会产生碰撞的风险(Amundsen和Hyden, 1977)。当导致冲突的故障(例如,人为操作故障、道路故障和车辆故障)无法得到适当纠正时,冲突被认为与碰撞有因果关系(Davis等人,2011;Tarko, 2020)。由于潜在的因果关系,用于识别交通冲突和量化其严重程度的措施可以被视为SSM。与车祸相比,交通冲突要频繁得多。

值得注意的是,随着时间的推移,已经制定了许多与安全有关的措施。然而,并不是所有这些都可以被认为是SSM。根据Tarko et al (2009), SSM的两个合格标准是:(1)它应该来自与碰撞直接相关的交通冲突,(2)交通冲突与相关潜在碰撞频率和/或严重程度之间的关系可以通过一些实用的方法量化。

SSM是识别交通冲突的措施,这些冲突在统计上与撞车有关。SSM的计算通常对用于定义流量冲突的预先确定的阈值很敏感。在确定了流量冲突之后,利用基于ssm的模型来量化冲突的严重程度。一些基于ssm的模型估计发生崩溃的概率,而不是

Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值