看完秒懂ICA(含MATLAB和python代码)

这篇博客介绍了独立成分分析ICA的基本原理及其在信号处理中的应用。博主通过MATLAB代码展示了如何进行信号混合、白化处理以及FASTICA算法的实现,最终成功分离出原始信号。文中提到了ICA算法的开源实现较少,且存在一些未公开的‘黑魔法’,强调了理解和实现ICA的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

绪论

独立成分分析ICA是一个在多领域被应用的基础算法。ICA是一个不定问题,没有确定解,所以存在各种不同先验假定下的求解算法。相比其他技术,ICA的开源代码不是很多,且存在黑魔法–有些步骤并没有在论文里提到,但没有这些步骤是无法得到正确结果的。

ICA原理

就是源信号加权混合后通过ICA分离

clear;clc;close all;

% ts=0.005
% t=np.arange(0,1,ts)
% s1=np.sin(2*np.pi*10*t);s2=np.sin(2*np.pi*20*t);s2=np.array(20 * (5 * [2] + 5 * [-2]));a9mysubplot.mysubplot([s1,s2])
% s=0.5*s1+0.5*s2;a9myplot.myplot(s)

ts=0.005;
t=0:0.005:1;
s1=sin(2*pi*10*t);
s2=square(2*pi*20*t,50);
% plot(s2);
% figure(1);subplot(211);plot(s1);subplot(212);plot(s2);
subplot(3,2,1),plot(s1),title('输入信号1');
subplot(3,2,2),plot(s2),title('输入信号2');

S=[s1;s2]; 
% s=0.5*s1+0.5*s2;S=[s;s];
Sweight = rand(size
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值