【算法】动态规划与递归——感受动态规划是递推!注意,是推!

考虑一个题是否能用动态规划求解:

(1)能够定义子问题,并且原问题能够用子问题表示
(2)子问题的解应该能通过其他子问题求出
不满足以上条件的话,该题不能用动态规划求解。

如何找递推关系:

看最大的问题如何由第二大的问题推出(和递归的思路一样,和二叉树当时总结的“只看根和左右子树”的思路也一样),拿“最长公共子序列来说”,有如下两个序列:

BBAAAAE
BBBBE

如何去找递推思路呢?BBAAAAE和 BBBBE的最长公共子序列个数就=各自去掉最后一位,BBAAAA和BBBB的最长公共子序列个数+1。
如果最后一位不相同呢?

BBAAAAE
BBBBA

1.打家劫舍**

在这里插入图片描述
注意:
(1)一开始我只想到了隔一家偷一次,这样写出来的代码通过率还可以(暴力求解)
在这里插入图片描述
但是没想到,像上图这样的情况,隔两家偷才是最好的偷法。
(2)递归也可以求解,但是会超时

(3)动态规划
在这里插入图片描述

步骤一:定义子问题

稍微接触过一点动态规划的朋友都知道动态规划有一个“子问题”的定义。什么是子问题?子问题是和原问题相似,但规模较小的问题。例如这道小偷问题,原问题是“从全部房子中能偷到的最大金额”,将问题的规模缩小,子问题就是“从 k个房子中能偷到的最大金额”,用 f(k)表示

在这里插入图片描述
在这里插入图片描述

步骤二:写出子问题的递推关系

这一步是求解动态规划问题最关键的一步。然而,这一步也是最无法在代码中体现出来的一步。在做题的时候,最好把这一步的思路用注释的形式写下来。做动态规划题目不要求快,而要确保无误。否则,写代码五分钟,找 bug 半小时,岂不美哉?

我们来分析一下这道小偷问题的递推关系:

假设一共有 n 个房子,每个房子的金额分别是 H_0, H_1,H_n−1 ,子问题 f(k)表示从前 k个房子(即 H_0, H_1, …, H_k-1)中能偷到的最大金额。那么,偷 k 个房子有两种偷法:

在这里插入图片描述
在这里插入图片描述

步骤三:确定 DP 数组的计算顺序

在确定了子问题的递推关系之后,下一步就是依次计算出这些子问题了。在很多教程中都会写,动态规划有两种计算顺序,一种是自顶向下的、使用备忘录的递归方法,一种是自底向上的、使用 dp 数组的循环方法。不过在普通的动态规划题目中,99% 的情况我们都不需要用到备忘录方法,所以我们最好坚持用自底向上的 dp 数组。

DP 数组也可以叫”子问题数组”,因为 DP 数组中的每一个元素都对应一个子问题。如下图所示,dp[k] 对应子问题 f(k),即偷前 k 间房子的最大金额。
在这里插入图片描述

class Solution {
public:
    int rob(vector<int>& nums) {
        int k=nums.size();
        /*------特殊情况--------*/
        if(k==0)
            return 0;
        if(k==1)
            return nums[0];
        /*---------------------*/
        int dp[k+1];
        dp[0]=0;  //边界
        dp[1]=nums[0];  //边界
        for(int i=2;i<=k;i++){
            dp[i]=max(dp[i-1],dp[i-2]+nums[i-1]);  //迭代子问题
        }
        return dp[k];  //最终的问题
    }
};

此外,

动态规划的题目,还可以用递归的思路来求解,不过时间复杂度太大了。

class Solution {
public:
    int rob(vector<int>& nums) {
        int k=nums.size();
        return f(k,nums);
    }
    int f(int k,vector<int>& nums){
        if(k==0)
            return 0;
        if(k==1)
            return nums[0];
        return max(f(k-1,nums),f(k-2,nums)+nums[k-1]);
    }
};

可以看到大多数的测试用例是可以通过的。
在这里插入图片描述
我们通过画图来看一下动态规划和递归在复杂度上的区别。动态规划以求解dp[7]为例,递归为了绘制方便以求解dp[5]为例。
在这里插入图片描述
可以看出,递归的复杂度远大于动态规划。原因在于,递归法(分治法)在子问题和子子问题等上被重复计算了很多次(例如dp[2]被计算了3次),而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间。

2.爬楼梯*

在这里插入图片描述

解析:

(1)定义子问题:爬k阶有f(k)种方法,原问题的解是f(n)
(2)子问题的递推关系:由题目可以得知,只能爬一步或两步,那么就子问题可以分解成两部分。
①假设已经爬了k-1层,那么此时爬到k层只能迈一步,也就是说爬到k-1层所用的方法全部可以用来爬到k层。
②假设已经爬了k-2层,那么此时爬到k层只能迈两步(迈一步再迈一步属于上一种情况)。所以爬到k-2层所用的方法全部可以用来爬到k层。
f(k)=f(k-1)+f(k-2)
(3)边界
有几个边界呢?这就要从递推关系里去看,我们发现求f(k)的时候需要已知f(k-1)和f(k-2)两个量,所以边界就是两个啦。题目又说给出的n是正整数,那么边界就是n=1时和n=2时啦。

class Solution {
public:
    int climbStairs(int n) {
        /*-----特殊情况------*/
        if(n==1)
            return 1;
        if(n==2)
            return 2;
        /*------------------*/
        int dp[n+1];  //加一为了不用思考
        dp[1]=1; //边界
        dp[2]=2;  //边界
        for(int i=3;i<=n;i++){ //从这里也能看出边界是3-1和3-2
            dp[i]=dp[i-1]+dp[i-2];  //迈一步+迈两步
        }
        return dp[n];
    }
};

此外,

如果用递归求解,依然会超时。

class Solution {
public:
    int climbStairs(int n) {

        if(n==1)
            return 1;
        if(n==2)
            return 2;
        return climbStairs(n-1)+climbStairs(n-2);  //迈一步+迈两步
    }
};

在这里插入图片描述

3. 01 背包问题

首先,这是一个二维的递推,理解起来可能有些困难。但是背过就行!
有的题目中是这样描述的:一个背包有给定的最大体积,若干物品有给定的体积重量。求使得背包重量最大。
有的题目中是这样描述的:一个背包有给定的最大重量,若干物品有给定的重量价值。求使得背包价值最大。

思路:

(1)定义子问题:dp[i][j]表示放入第i个物品时,背包剩余体积最大为j时的最大重量

(2)子问题的递推关系:
当前物品的体积小于等于背包剩余体积时,我可以选择把物品放进去,也可以选择不放,当然哪个更有利(使重量最大选哪个);
当前物品的体积大于背包剩余体积时,根本放不进去。
if(当前物品的体积小于等于背包剩余体积时) dp[i][j]=max(dp[i-1][j-物品体积]+物品重量, dp[i-1][j])
if(当前物品的体积大于背包剩余体积时) dp[i][j]=dp[i-1][j]

(3)边界
二维的边界是一维数组(类似于一维数组的边界是前面的数值):dp[0][1] 、dp[0][2]、 …dp[0][n]。如图所示,也就是先把第一行填成0。

物品/体积012345
没有物体000000
第1个物品
第2个物品
第3个物品

如果你一开始没思考好边界,那么写主要代码时也能感受出边界是什么。你看这行关键代码,dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i]]+w[i]);我们的i是从1开始的,那么dp[i-1][]是不是没有值呀?那就需要提前表示出来,那它就是边界。

(4)递推的感觉是,整体从上往下推(第一重循环),每一行从左往右推(第二重循环)。

物品/体积012345
第0个物品 000000
第1个物品
第2个物品
第3个物品
#include <bits/stdc++.h>

using namespace std;

/*
	dp[i][j]表示放入第i个包时,背包剩余体积为j时的最大重量 
*/ 

int main(int argc, char *argv[])
{
    int N,V;
    int dp[21][1010];
    int w[21];
    int v[21];
    cout<<"how many stuff?"<<endl;
    cin>>N;//输入有几个物品
    cout<<"the volumn of bag:"<<endl;
	cin>>V;//背包的最大体积 
	for(int i=1;i<=N;i++){
		cout<<"bag "<<i<<endl;
		cin>>w[i]>>v[i];   //输入每个物品的重量 ,体积 
	} 
	/*----边界-------*/
	for(int j=0;j<=V;j++){ //边界条件 
		dp[0][j]=0;
	}
	
	for(int i=1;i<=N;i++){
		for(int j=0;j<=V;j++){
			if(j>=v[i])  //放得下,可选择放或者不放 
				dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i]]+w[i]); 
			else  //放不下,只能不放 
				dp[i][j]=dp[i-1][j];
		}
	}
	
	cout<<dp[N][V]<<endl;
	
	return 0;
}

4.最长公共子序列

注意:
(1)定义子问题:
dp[i][j]字符串A的前i个和字符串B的前j个拥有的最长公共子序列的长度
(2)子问题的递推关系:
在这里插入图片描述
(3)边界
当其中一个子序列为空时,公共子序列个数为0。所以dp的边界如下图所示

字符串a/字符串bABBDA
000000
B0
D0
C0
A0
本次代码中对边界的赋值也比较巧妙,直接memset(dp,0,sizeof(dp))

4.1 如果单纯求最长公共子序列的个数:

#include <bits/stdc++.h>

using namespace std;

/*
	dp[i][j]字符串A的前i个和字符串B的前j个拥有的最长公共子序列的长度 
*/ 

int main()
{
    int dp[101][101];  //字符串长度最长100
    string a,b;
    cin>>a;
    cin>>b;
    
    /*----------边界----------*/
	memset(dp,0,sizeof(dp)); 
	/*----------递推-----------*/ 
	for(int i=1;i<=a.size();i++){
		for(int j=1;j<=b.size();j++){
			if(a[i]==b[j])
				dp[i][j]=dp[i-1][j-1]+1;
			else
				dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
		}
	}
	cout<<"The amount of the same subset is:"<<dp[a.size()][b.size()]<<endl;;
	return 0;
}

4.2 如果还要输出最长公共子序列,那么还要加上回溯的操作

这就需要我们区分当a[i]!=b[j]时,到底选的哪一个。因为回溯的时候涉及到了字符串a和字符串b各自指针的移动,到底移动a的字符串还是b的就得看选的哪一种情况。
在这里插入图片描述
这里借助和dp一样大小的数组来记录。

#include <bits/stdc++.h>

using namespace std;

/*
	dp[i][j]字符串A的前i个和字符串B的前j个拥有的最长公共子序列的长度 
*/ 
int dp[101][101];  //字符串长度最长100
int note[101][101];
string a,b;

void printIt(int i,int j){
	if(i==0||j==0) return;  //别忘了递归出口 
	if(note[i][j]==1){
		printIt(i-1,j-1);
		cout<<a[i-1];  //先找到的后输出 
	}else if(note[i][j]==2){
		printIt(i-1,j);
	}else
		printIt(i,j-1);
}
int main()
{
    
    
    cin>>a;
    cin>>b;
    
    /*----------边界----------*/
	memset(dp,0,sizeof(dp)); 
	memset(note,0,sizeof(note));
	/*----------递推-----------*/ 
	for(int i=1;i<=a.size();i++){
		for(int j=1;j<=b.size();j++){
			if(a[i]==b[j]){
				dp[i][j]=dp[i-1][j-1]+1;
				note[i][j]=1;  //做个标记 
			}	
			else{
				if(dp[i-1][j]>dp[i][j-1]){
					dp[i][j]=dp[i-1][j];
					note[i][j]=2;  //做个标记 
				}else{
					dp[i][j]=dp[i][j-1];
					note[i][j]=3;  //做个标记 
				}			
			}
		}
	}
	cout<<"The amount of the same subset is:"<<dp[a.size()][b.size()]<<endl;
	/*--------输出最长公共子序列---------*/
	printIt(a.size(),b.size());
	return 0;
}


在这里插入图片描述

5.最长上升子序列

首先区分最长上升子序列(左)最长不下降子序列(右)
在这里插入图片描述

思路:

(1)定义子问题:dp[i]表示以第i个数结尾的最长上升子序列的个数
(2)边界:dp[1]=1
(3)子问题的递推关系:
比如说当前子序列是5 2 3 7 4 6,我要求dp[6]。我地去6前面找比6小的数,看他们谁的dp[j]+1最大,这个最大值就是dp[6]

注意:

这个题不是dp[n]就是最终答案(这和子问题的定义有关)。需要用ans一直记录当前情况下的最长上升子序列个数。最终答案是ans。如果你不用ans记录的话,需要最后来个排序,求出dp数组的最大值。

# include<bits/stdc++.h>
using namespace std;

int main(){
	int a[100+1];
	int dp[100+1];
	char y;
	int k=1;
	do{
		scanf("%d",&a[k])  ; 
		k++;  //一共输入了k-1个 
	}while((y=getchar())!='\n');
	/*------边界-------*/
	dp[1]=1;
	/*----------------*/ 
	int ans=1;   //一直更新这个最大值 
	for(int i=2;i<=k-1;i++){
		dp[i]=1;  //至少是1吧 
		for(int j=1;j<i;j++){  //内层循环找到了比自己小的数的dp最大值 
			if(a[j]<a[i]){
				dp[i]=max(dp[i],dp[j]+1);
			}
		}
		ans=max(ans,dp[i]);  //但那个最大值不一定是整体的最大值 
	}
	printf("%d",ans);
	return 0;
}

如果要打印最长上升子序列:找到那个dp[i]=ans的i。遍历a[1]到a[i]输出比a[i]小的数。

6.更新中**

  • 6
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值