
机器学习算法
文章平均质量分 94
机器学习算法
听风吹等浪起
随缘学习,正常摆烂
个人主页:henry-zhang.blog.csdn.net
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
梯度下降法详解:优化算法的核心与实现
本文系统介绍了机器学习中的核心优化算法——梯度下降法。该方法通过沿目标函数梯度反方向迭代调整参数,寻找最优解。文章详细解析了其工作原理(如盲人下山类比)、数学推导(以二次函数为例)和实现步骤,并讨论了学习率等关键参数的影响。通过Python代码实例展示了该方法在3D数据拟合中的应用,直观呈现了损失函数动态变化和参数优化过程。梯度下降法因其通用性强、计算高效等特点,成为深度学习等领域的基石算法。原创 2025-07-24 12:55:17 · 686 阅读 · 0 评论 -
关于深度学习的梯度下降法介绍
梯度下降法是机器学习中用于优化模型参数的核心算法。理解梯度的概念、掌握梯度下降法的基本步骤,并了解其潜在问题及解决方案,是掌握这一“黑魔法”的关键。通过合理选择学习率、使用优化算法的变体以及应对局部最小值和鞍点问题,可以显著提高梯度下降法的性能,从而更有效地训练神经网络。原创 2025-03-20 15:51:45 · 964 阅读 · 0 评论 -
K-means算法
通俗版 K-means 解释想象一下,你是一个教练,现在有一群人需要分成K 个队伍。你的任务就是合理分组,让每个队伍内部的人尽可能相似(比如身高相近、兴趣相似等)。具体步骤是这样的:随机选队长:你随便指定K 个人作为初始的“队长”(也就是聚类中心第一次站队:每个人观察自己和哪个队长最接近(比如距离最近),然后站到对应的队伍里。队长重新调整位置:每个队伍的队长不能一直原地不动,于是你让他们移动到当前队伍成员的平均位置(也就是新的中心点)。重新站队:大家再次看看自己离哪个新队长最近,调整队伍。重复调整。原创 2025-04-02 16:38:42 · 1881 阅读 · 0 评论 -
分类算法:支持向量机
支持向量机(SVM)是一种强大的机器学习分类算法,它通过寻找最优决策边界来实现分类,具有出色的泛化能力。SVM的核心思想是最大化间隔,确保决策边界远离两侧数据点,提高模型鲁棒性。它特别适合小样本、高维数据分类,如文本分类和生物医学数据分析。虽然计算成本较高,但SVM在处理非线性问题和抗过拟合方面表现优异。通过核函数如RBF,SVM能有效处理复杂边界问题。完整案例展示了SVM在非线性数据集上的应用,包括模型训练、评估和可视化决策边界的过程。原创 2025-08-10 06:10:22 · 868 阅读 · 0 评论