
神经网络创新
文章平均质量分 96
神经网络创新,图像识别、语义分割
听风吹等浪起
随缘学习,正常摆烂
个人主页:henry-zhang.blog.csdn.net
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于U-Net与Attention U-Net的医学图像分割系统详解
本文介绍了一个基于PyTorch的医学图像分割系统,支持U-Net和AttentionU-Net两种网络,适用于多类别语义分割任务。项目包含完整的数据预处理、模型训练、评估和预测功能,特别针对CT扫描等医学图像优化,提供数据增强、窗口化处理等功能。系统采用模块化设计,包含数据集处理、模型定义、训练流程、评估指标和可视化工具,并支持多种分割指标计算。项目可扩展性强,可用于医学影像、遥感和工业质检等领域,未来可集成更多模型和功能。原创 2025-09-26 09:25:29 · 997 阅读 · 0 评论 -
SwinTransformer特征提取融合convNeXt创新改进
本文介绍了一个基于深度学习的图像分类系统,该系统创新性地融合了SwinTransformer和ConvNeXt架构,并结合CBAM注意力机制与多尺度特征融合技术。系统实现了完整的训练-验证-测试流程,采用FocalLoss解决类别不平衡问题,支持多种优化器和学习率策略。通过数据增强和混合架构设计,在验证集上取得了99.5%的准确率。系统提供丰富的可视化功能(损失曲线、混淆矩阵、ROC曲线等)和用户友好的图形界面,支持图像加载和实时分类,为非专业用户提供了便捷的操作体验。原创 2025-09-12 14:32:04 · 978 阅读 · 0 评论 -
Unet创新改进:基于点提示的交互式图像分割系统设计与实现
摘要:本文提出了一种基于点提示的交互式图像分割系统,采用改进的U-Net架构,通过用户提供的正负样本点实现精确分割。系统包含完整的训练、验证和交互推理流程,支持多类别分割。创新性地引入点提示通道,将用户交互信息(正负样本点)与图像特征结合输入网络。实验结果显示,该系统在mIoU(0.8543)和Dice系数(0.8912)等指标上表现优异,具有快速响应和高质量分割的特点。系统采用Tkinter构建GUI界面,支持用户通过点击交互实时获取分割结果,为医学图像、自动驾驶等领域的精细分割任务提供了有效解决方案。原创 2025-09-12 08:57:27 · 1058 阅读 · 0 评论