图像处理----直方图均衡化(灰度直方图)

文章介绍了直方图均衡化在图像处理中的应用,它通过将图像灰度直方图变平,使每个灰度值分布概率相同,从而增强图像的对比度。提供的Python代码示例展示了如何实现这一过程,包括计算直方图、构建累积分布函数以及使用线性插值计算新像素值。处理后的图像对比度明显提高,细节更清晰。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像灰度变换中一个非常有用的例子就是直方图均衡化。直方图均衡化是指将一副图像的灰度直方图变平,使得变换之后的图像中的每个灰度值的分布概率都相同。在对图像做进一步处理之前,直方图均衡化通常是对图像灰度值进行归一化的非常好的方法,并且可以增强图像的对比。

在这种情况下,直方图均衡化的变换函数是图像中像素值的累积分布函数(cumulative distribution function,简写为cdf,将像素值的范围映射到目标范围的归一化操作里)。

下面这个函数是直方图均衡化的具体实现:

from PIL import Image
from pylab import *
from numpy import *


def histeq(im, nbr_bins=256):
    """对一幅灰度图像进行直方图均衡化"""

    # 计算图像的直方图
    # 在numpy中,也提供了一个计算直方图的函数histogram(),第一个返回的是直方图的统计量,第二个为每个bins的中间值
    imhist, bins = histogram(im.flatten(), nbr_bins, normed=True)
    cdf = imhist.cumsum()  #
    cdf = 255.0 * cdf / cdf[-1]
    # 使用累积分布函数的线性插值,计算新的像素值
    im2 = interp(im.flatten(), bins[:-1], cdf)
    return im2.reshape(im.shape), cdf


pil_im = Image.open('D:\\software\\pycharm\\PycharmProjects\\computer-version\\data\\tu3.jpg')  # 打开原图
pil_im_gray = pil_im.convert('L')  # 转化为灰度图像
pil_im_gray.show()  # 显示灰度图像

im = array(Image.open('D:\\software\\pycharm\\PycharmProjects\\computer-version\\data\\tu3.jpg').convert('L'))

im2, cdf = histeq(im)

im2 = Image.fromarray(uint8(im2))
im2.show()

im2.save("junheng.jpg")
    

原灰度直方图为:

经过均衡化处理后的图像为:

 结论:我们可以看到,直方图均衡化后的图像的对比度增强了,原先图像灰色区域的细节变得清晰。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值