什么是Rasa框架(智能机器人对话系统)

Rasa 是一个开源框架,专门用于构建基于机器学习的对话式人工智能助手或聊天机器人。它提供了从自然语言理解 (NLU) 到对话管理的一站式解决方案。

Rasa 的主要组成部分

  1. Rasa NLU (Natural Language Understanding)

    • 用于处理用户输入,提取意图和实体。
    • 主要任务:
      • 意图识别:理解用户的意图,比如“查询天气”或“预订酒店”。
      • 实体识别:从用户输入中提取具体信息,比如日期、地点等。
  2. Rasa Core

    • 负责对话管理,通过机器学习预测下一步的动作。
    • 支持:
      • 根据上下文动态生成对话。
      • 集成业务逻辑和 API 调用。

Rasa 的核心特性

  1. 开源和灵活

    • 可以根据需求自定义管道和模型。
    • 与现有系统和数据库轻松集成。
  2. 支持多种语言

    • 内置多语言支持,用户可以通过训练实现特定语言的理解。
  3. 完全本地运行

    • Rasa 不需要依赖云服务,数据完全掌控在本地,适合注重隐私和安全的项目。
  4. 基于机器学习

    • 使用 TensorFlow 或其他深度学习框架进行模型训练。
    • 可以通过自定义训练数据优化性能。
  5. 无代码/低代码选项

    • 提供 Rasa X(一个用于测试和改进对话的可视化工具),方便快速部署和迭代。

Rasa 工作流程

  1. 定义训练数据

    • 创建 NLU 数据,包含意图、示例句子和实体标签。
    • 创建对话故事,描述可能的对话流程。
  2. 配置管道

    • 配置 NLU 管道和对话策略。
  3. 训练模型

    • 通过训练数据生成模型。
  4. 测试和调试

    • 使用 Rasa Shell 或 Rasa X 进行测试。
  5. 部署和集成

    • 将 Rasa 部署到服务器,并与前端(如网页、微信、Telegram 等)集成。

示例代码

NLU 数据示例 (nlu.yml)

 version: "3.0"
nlu:
- intent: greet
  examples: |
    - 你好
    - 您好
    - 嘿
- intent: goodbye
  examples: |
    - 再见
    - 拜拜
    - 下次见
- intent: inform
  examples: |
    - 我的名字是 [小明](name)
    - 我住在 [北京](city)

对话故事 (stories.yml

 version: "3.0"
stories:
- story: greet and goodbye
  steps:
  - intent: greet
  - action: utter_greet
  - intent: goodbye
  - action: utter_goodbye

 培训模型和运行

# 训练模型
rasa train

# 启动 Rasa 服务器
rasa run

# 启动 Rasa Shell 测试
rasa shell
 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不会编程的程序猿ᅟ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值