- 博客(89)
- 收藏
- 关注
原创 常见软件导出矢量图
在数学上定义为一系列由点连接的线。矢量文件中的图形元素称为对象。每个对象都是一个自成一体的实体,它具有颜色、形状、轮廓、大小和屏幕位置等属性。位图也称为点阵图或像素图,是由称作像素(图片元素)的单个点组成的。这些点可以进行不同的排列和染色以构成图样。当放大位图时,可以看见赖以构成整个图像的无数单个方块。位图格式转成矢量图格式(如 jpg 转 eps/pdf 等),本质还是位图。
2025-03-09 13:40:28
469
原创 YOLOv10目标检测-训练自己的数据
模型的建立需要收集图片并且进行标注。第一个数字表示目标框的类别(如类别0,1,2,…),后面四个长数字代表:标记框中心点的横纵坐标(x, y),标记框宽高的大小(w, h),且都是归一化后的值(图片左上角为坐标原点)。
2024-12-25 18:16:34
1544
原创 Introduction: Graph Neural Network (GNN)
本文介绍的是GNN方面入门级别的知识, 其实这坑早就挖下了, 但是一直都没有机会补. 部分内容出自, 训练营的切入的角度避开了复杂的数学推导, 方便GNN入门.关于实现, 现在还没有统一的比较成熟的图学习框架, 无论是PyTorch还是TF, 都需要自己手动实现.有两个图学习框架和文中所涉及的所有论文和图片出处在结尾都会提供.
2024-12-16 17:43:56
1074
原创 CentOS安装docker
这个错误消息表明系统无法连接到 Docker 的官方仓库 URL,可以更换为阿里云镜像源。将 Docker 官方的 YUM 存储库添加到 CentOS 系统中。使用 yum 进行安装 Docker。
2024-11-22 14:56:57
381
原创 Flask 实现文件下载
要通过URL下载 /home/data 目录下的图片,可以使用Python搭建一个简单的HTTP服务器,使用 Flask 框架来实现。
2024-09-25 15:23:57
844
原创 Docker torchserve workflow部署流程
搭建涉及到的模型,如ocr_detection,ocr_judge,ocr_text, xxx_detection …,即/path/model-server/model-store。
2024-09-23 13:38:24
606
原创 Docker torchserve 部署模型流程
地址: https://hub.docker.com/r/pytorch/torchserve/tags2. docker启动指令CPUGPU/home/model-server/model-store 是docker映射地址,不能更改进入容器,可以发现各个端口的意义,8080是通信访问接口,8081是管理服务配置接口,8082是服务监控接口(2) xx_model_handler.py(3) config.jsontorch-model-archiver --model-name {n
2024-09-13 13:57:34
1222
原创 基于modelscope,部署modelscope server
修改【/opt/conda/lib/python3.10/site-packages/modelscope/utils/input_output.py】中 pipeline_info.task_name 为 pipeline_info[‘task_name’]获取call接口入参:http://ip:8814/describe。请求call:http://ip:8814/call。文档地址:http://ip:8814/docs。模型本地启动的,可以直接访问地址了。我是直接拉取的GPU镜像。
2024-09-12 14:54:27
1270
转载 2024激活Typora,最新版本的1.8.10.0可用
实测可用日期为:2024-02-11目前最新版本 1.8.10.0 也是可以实现激活的注:免修改注册表、不用修改时间,更不需要破解补丁。
2024-04-17 13:18:15
2111
5
原创 【Linux】将程序的输出显示到屏幕,同时写入到log文件
nohup 放在命令的开头,表示不挂起(no hang up),也即,关闭终端或者退出某个账号,进程也继续保持运行状态,一般配合&符号一起使用。2>&1 也就表示将错误重定向到标准输出上。2表示标准错误,1表示标准输出。这里的&相当于转义字符,如果不加&则会变成把标准错误2输出到名为1的文件中。加上-u(unbuffered)参数后,表示python执行时,会强制其标准输出也同标准错误一样不通过缓存直接打印到屏幕。& 放在命令到结尾,表示后台运行,防止终端一直被某个进程占用,这样终端可以执行别到任务。
2024-02-29 15:55:59
982
转载 实战中,BERT如何处理篇章级长文本?
如果考虑性能、只能使用一个Pooling的话,就使用Max-Pooling,因为捕获的特征很稀疏、Max-Pooling会保留突出的特征,Mean-Pooling会将特征打平。通过统计,该任务与主题相关的句子,不到总字数的60%,40%的时间都是在浪费在这些"糟粕"上,同时这些冗余文本也会带来一些噪声,不利于模型的学习。压缩法的宗旨是选取“精华”,去除“糟粕”。
2024-02-21 10:08:07
2256
转载 基于 chinese-roberta-wwm-ext 微调训练中文命名实体识别任务
是基于RoBERTa架构下开发,其中wwm代表,即对整个词进行掩码处理,通过这种方式,模型能够更好地理解上下文和语义关联,提高中文文本处理的准确性和效果。与原始的BERT模型相比,在训练数据规模和训练步数上做了一些调整,以进一步提升模型的性能和鲁棒性。并且在大规模无监督语料库上进行了预训练,使其具备强大的语言理解和生成能力。它能够广泛应用于各种自然语言处理任务,如文本分类、命名实体识别、情感分析等。我们可以使用这个模型作为基础,在不同的任务上进行微调和迁移学习,以实现更准确、高效的中文文本处理。进到。
2024-02-19 14:21:21
3249
转载 bert+crf可以做NER,那么为什么还有bert+bi-lstm+crf ?
但由于BERT本身就是all-attention,就是全局的Attention,不存在说哪个token谁离我远,我就注意不到了(BERT原来较LSTM吹的,也是这一点,attention全局建模)。因为对于序列标注问题,假设已经知道前面一个token标签为B-Location, 则下一个token标签大概率是I-Location,而不是O, 这样的问题下,CRF对于前后有依赖(也就是题主说的surrounding predictions),全局的概率转移建模估计更加的合理。关于加上BiLSTM有没有用?
2023-08-02 11:31:07
743
原创 Transformer 模型详解
红色圈中的部分为 Multi-Head Attention,是由多个 Self-Attention组成的,可以看到 Encoder block 包含一个 Multi-Head Attention,而 Decoder block 包含两个 Multi-Head Attention (其中有一个用到。编码器组件和解码器组件中分别为连续 N(在 Transformer模型中 N = 6)个具有相同结构的编码器和解码器,每个编码器的结构都是相同的,但是它们使用不同的权重参数。(4)残差结构(Residuals)
2023-07-11 15:49:10
1693
原创 ChatGLM2-6B的P-Tuning微调
注:ChatGLM2-6B官网给的环境P-Tuning微调报错。可复用ChatGLM-6B(上述部署教程),即。
2023-07-05 12:48:26
4335
9
转载 ChatGLM-6B的P-Tuning微调详细步骤及结果验证
P-Tuning是一种较新的模型微调方法,它采用了参数剪枝的技术,可以将微调的参数量减少到原来的0.1%。具体来说,是基于的升级版,主要的改进在于采用了更加高效的剪枝方法,可以进一步减少模型微调的参数量。的原理是通过对已训练好的大型语言模型进行参数剪枝,得到一个更加小巧、效率更高的轻量级模型。具体地,首先使用一种自适应的剪枝策略,对大型语言模型中的参数进行裁剪,去除其中不必要的冗余参数。然后,对于被剪枝的参数,使用了一种特殊的压缩方法,能够更加有效地压缩参数大小,并显著减少模型微调的总参数量。总的来说,
2023-07-04 16:51:32
2149
1
原创 ChatGPT中 top_p 和 temperature 的作用机制
可以看到,当 temperature 更大时,模型的选择更加随机(每个 token 的概率更加接近), 给予原本低概率的 token 更大的选择机会,从而产生更多样化和创意的输出。相反, temperature 更小使模型的选择更加确定,给予原本高概率的 token 更大的选择机 会,从而产生更集中和一致的输出。考虑 a$,他的概率是 0.25 ,加上前面的所有概率得到 0.75。时,模型在每次选择 token时只选择概率最大的那一个,于是我们每次询 问 (同样的prompt) 都会得到完全相同的回答。
2023-06-30 15:46:01
9064
3
转载 全网最新版ChatGLM-6B开源模型环境详细部署及安装——如何在低显存单显卡上面安装私有ChatGPT GPT-4大语言模型
ChatGPT的爆火让许多公司和个人都想要开发自己的大型语言模型,但是,由于算力和语言模型开发能力等诸多方面的限制,许多人最终都只能在开发的早期阶段止步不前。然而,近期清华大学知识工程和数据挖掘小组(Knowledge Engineering Group (KEG) & Data Mining at Tsinghua University)发布了对话机器人ChatGLM-6B的开源版本,这一切都变得更加容易了。这个中英文语言模型拥有千亿参数规模,并且对中文进行了优化。
2023-06-19 10:05:04
2852
原创 神经网络/深度学习(二)
在 1 vs N 结构中,我们只有一个输入 x,和 N 个输出 y1, y2, …可以有两种方式使用 1 vs N,第一种只将输入 x传入第一个 RNN 神经元,第二种是将输入 x 传入所有的 RNN 神经元。每个神经元接受的输入包括:前一个神经元的隐藏层状态 h(用于记忆) 和当前的输入 x (当前信息)。上图是RNN 模型的一种 N vs N 结构,包含 N 个输入 x1, x2, …, xN,和 N 个输出 y1, y2, …(1)序列分类任务,一段语音、一段文字的类别,句子的情感分析。
2023-04-12 14:41:14
1223
原创 linux创建用户
创建用户名为aaa的用户-m:自动建立用户的登入目录sudo是允许系统管理员让普通用户执行root命令的一个工具(获取权限)这里会需要输入管理员的密码(不是你想给新用户设置的密码!!!输入用户aaa的密码。
2023-03-22 09:33:34
2268
原创 Python地理位置信息库geopy的使用:根据中心点坐标,方向,距离计算坐标; 利用两点经纬度计算地理空间距离
Python地理位置信息库geopy的使用:根据中心点坐标,方向,距离计算坐标; 利用两点经纬度计算地理空间距离
2023-01-30 10:37:03
1627
1
转载 ARIMA(p,d,q)模型原理及其实现 --------python
ARIMA(p,d,q)模型原理及其实现 --------python
2022-11-18 15:47:50
8984
2
原创 python doc转docx
import osfrom win32com import clientimport timebase_dir = r"E:\xx\xxx\xxxx"for root, dirs, files in os.walk(base_dir): n = 1 for file in files: if file.endswith(".doc"): time.sleep(5) print(file) #w
2022-03-11 14:58:42
1555
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人