主要思想:
- 以一个未访问的顶点作为起始顶点
- 访问其所有相邻的顶点,对每个相邻的顶点访问他们相邻的未被访问的顶点
- 知道所有顶点都被访问,遍历结束
代码实现:
#include <stdio.h>
int main()
{
int i, j, n, m, a, b, cur, book[101] = { 0 }, e[101][101];
int que[10001], head, tail;
scanf("%d %d", &n, &m);
//初始化二维矩阵
for(i=1;i<-n;i++)
for (j = 1; j <= n; j++)
{
if (i == j) e[i][j] = 0;
else
e[i][j] = 999999999;//假设999999999是正无穷
}
//读入顶点之间的边
for (i = 1; i <= m; i++)
{
scanf("%d %d", &a, &b);
e[a][b] = 1;
e[b][a] = 1;//无向图
}
//队列初始化
head = 1;
tail = 1;
//从1号顶点出发,将1号顶点放入队列
que[tail] = 1;
tail++;
book[1] = 1;//标记1号顶点访问完毕
//当队列不为空时循环
while (head < tail&&tail <= n)
{
cur = que[head];//当前正在访问的顶点编号
for (i = 1; i <= n; i++)//从1~n依次尝试
{
//判断从顶点cur到顶点i是否有边,并且判断顶点i是否已经访问过
if (e[cur][i] == 1 && book[i] == 0)
{
//如果从顶点cur到顶点i有边,并且顶点i没有被访问过,则将顶点i入队
que[tail] = i;
tail++;
book[i] = 1;//标记顶点已经被访问
}
//如果tail大于n,则表明所有的顶点都已经被访问过
if (tail > n)
{
break;
}
}
head++;//往下扩展
}
for (i = 1; i < tail; i++)
{
printf("%d", que[i]);
}
return 0;
}
结果: