简单选择排序
-
在简单选择排序过程中,所需移动记录的次数比较少。最好情况下,即待排序记录初始状态就已经是正序排列了,则不需要移动记录。
-
最坏情况下,即待排序记录初始状态是按第一条记录最小,之后的记录从小到大顺序排列,则需要移动记录的次数最多为3(n-1)。简单选择排序过程中需要进行的比较次数与初始状态下待排序的记录序列的排列情况无关。当i=1时,需进行n-1次比较;当i=2时,需进行n-2次比较;依次类推,共需要进行的比较次数是(n-1)+(n-2)+…+2+1=n(n-1)/2,即进行比较操作的时间复杂度为O(n^2),进行移动操作的时间复杂度为O(n)。
-
简单选择排序是不稳定排序。
-
排序函数
若当前值,比之前的值大,就将其互换位置,若比较之后,无变化,则顺序不变。
void SelectSort(int arr[10])
{
int tmp;
for(int i=0;i<10;i++)
{
for(int j=0;j<9;j++)
{
if(arr[j] > arr[j+1])
{
tmp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = tmp;
}
}
}
}
- 打印函数
void Show(int arr[10])
{
for(int i=0;i<10;i++)
{
printf("%d ",arr[i]);
}
printf("\n");
}
- 主函数
int main()
{
int arr[10] = {1,10,3,6,8,4,67,9,0,2,};
SelectSort(arr);/*调用函数*/
Show(arr);/*调用打印函数*/
return 0;
}