
机器学习
文章平均质量分 81
醉公子~
每天一点点,收获满满!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习-L1、L2正则化详解
模型产生过拟合的现象表现为:在训练集上误差较小,而在测试集上误差较大。并且之所以产生过拟合现象是由于训练数据中存在一定的噪音,而我们为了尽可能的做到拟合每一个样本点(包括噪音),往往就会使用复杂的模型。最终使得训练出来的模型很大程度上受到了噪音数据的影响,例如真实的样本数据可能更符合一条直线,但是由于个别噪音的影响使得训练出来的是一条弯曲的曲线,从而使得模型在测试集上表现糟糕。因此,我们可以将这一过程看作是糟糕的训练集导致了糟糕的泛化误差。但仅仅从过拟合的表现形式来看糟糕的测试集(噪音多)也能导致糟糕的.原创 2021-04-25 21:23:42 · 2054 阅读 · 4 评论 -
python-机器学习-手写数字识别
机器学习简单的来说,分为监督式学习和无监督式学习;对于监督式学习就是需要人为的来告诉计算机这是什么,需要我们给他一个标签(答案)。无监督式学习就是不需要我们给出标签(答案)。图像识别(Image Recognition)是指利用计算机对图像进行处理、分析、计算以识别各种不同模式的目标和对像的技术。手写数字识别是机器学习以及学习CNN的一个入门案例,计算机通过手写体写出来的数字来识别出图片中的字;但是与印刷字体不同的是,印刷体的字体规则整齐,而不同人的手写体风格迥异,大小不一, 造成了计算机对手写识别原创 2021-02-16 12:46:18 · 2593 阅读 · 5 评论