读书笔记:机器学习-周志华(第一至五章)

  • ch1-绪论

  • ch2-模型评估与选择

    • 三种评估方法
      • 留一法
      • 交叉验证法k折
      • 自助法
    • 性能度量:评估模型泛化能力的评估标准
      • 错误率和精度
      • 查准率、查全率与F1

      • ROC和AUC
      • 代价敏感错误率与代价曲线

    • 比较检验
      • 假设检验
      • 交叉验证t检验
      • McNemar检验
      • Friedman 检验与 Nemenyi 后续检验
    • 偏差与方差
  • ch3-线性模型

    • 基本形式
    • 线性回归

    • 对数几率回归

    • 线性判别分析LDA
    • 多分类学习,拆分策略:一对一、一对其余、多对多
    • 类别不平衡问题
      • 再缩放策略
        • 欠采样:去除一些反例使正反例数目接近
        • 过采样:增加一些正例使正反例数目接近
        • 阈值移动:基于原始训练集,用训练好的分类器进行预测,将公式嵌入决策过程
  • ch4-决策树

    • 基本流程

    • 划分选择

      • 增益率

      • 基尼系数

    • 剪枝处理:预剪枝和后剪枝
    • 连续与缺失值
    • 多变量决策树
  • ch5-神经网络

    • 神经元模型
    • 感知机与多层网络
    • 误差逆传播算法:BP算法
      • 目标是最小化训练集D上的累积误差
      • 训练建议

    • 全局最小与局部极小
    • 其他常见神经网络
      • RBF网络

      • ART网络

      • SOM网络

      • 级联相关网络

      • Elman网络

      • Boltzmann机

      • 深度学习

          

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值