-
ch1-绪论
-
ch2-模型评估与选择
- 三种评估方法
- 留一法
- 交叉验证法k折
- 自助法
- 性能度量:评估模型泛化能力的评估标准
- 错误率和精度
- 查准率、查全率与F1
- ROC和AUC
- 代价敏感错误率与代价曲线
- 比较检验
- 假设检验
- 交叉验证t检验
- McNemar检验
- Friedman 检验与 Nemenyi 后续检验
- 偏差与方差
- 三种评估方法
-
ch3-线性模型
- 基本形式
- 线性回归
- 对数几率回归
- 线性判别分析LDA
- 多分类学习,拆分策略:一对一、一对其余、多对多
- 类别不平衡问题
- 再缩放策略
- 欠采样:去除一些反例使正反例数目接近
- 过采样:增加一些正例使正反例数目接近
- 阈值移动:基于原始训练集,用训练好的分类器进行预测,将公式嵌入决策过程
- 再缩放策略
-
ch4-决策树
- 基本流程
- 划分选择
- 增益率
- 基尼系数
- 剪枝处理:预剪枝和后剪枝
- 连续与缺失值
- 多变量决策树
-
ch5-神经网络
- 神经元模型
- 感知机与多层网络
- 误差逆传播算法:BP算法
- 目标是最小化训练集D上的累积误差
- 训练建议
- 全局最小与局部极小
- 其他常见神经网络
- RBF网络
- ART网络
- SOM网络
- 级联相关网络
- Elman网络
- Boltzmann机
- 深度学习
读书笔记:机器学习-周志华(第一至五章)
于 2023-07-28 15:36:56 首次发布