【机器学习-周志华】学习笔记-第七章

记录第一遍没看懂的
记录觉得有用的
其他章节:
        第一章
        第三章
        第五章
        第六章
        第七章
        第八章
        第九章
        第十章
        十一章
        十二章
        十三章
        十四章
        十五章
        十六章

第七章的前提:所有相关概率都已知
在这里插入图片描述
        7.1节首先定义了条件风险(公式7.1),然后把每一个样本的条件风险的数学期望表达了出来(公式7.2),然后返回来定义使得每个样本达到最小的分类器记录下来(公式7.3)。

极大似然估计

在这里插入图片描述
在这里插入图片描述

        极大似然估计是要先假设参数服从一个先验分布。可以看公式(7.12)(7.13)对应的例子,他假设了概率密度函数复制高斯分布,而高斯分布形式为: p ( x ) = ( 2 π σ 2 ) − 1 2 e x p ( − ( x − μ ) 2 2 σ 2 ) p(x)=(2\pi\sigma^2)^{-\dfrac{1}{2}}exp(-\dfrac{(x-\mu)^2}{2\sigma^2}) p(x)=(2πσ2)21exp(2σ2(xμ)2)。因此,相当与把高斯分布的表达式代入(7.10)之中,去解(7.11)中的问题。首先代入可得:
L L ( θ c ) = ∑ x ∈ D c l o g ( p θ c ( x ) ) = ∑ x ∈ D c l o g ( ( 2 π σ c 2 ) − 1 2 e x p ( − ( x − μ c ) 2 2 σ c 2 ) ) = ∑ x ∈ D c − 1 2 l o g 2 π σ c 2 − ( x − μ c ) 2 2 σ c 2 LL(\theta_c)=\sum_{x\in D_c}log(p\theta_c(x))=\sum_{x\in D_c} log((2\pi\sigma^2_c)^{-\dfrac{1}{2}}exp(-\dfrac{(x-\mu_c)^2}{2\sigma^2_c }))=\sum_{x\in D_c}-\dfrac{1}{2}log2\pi\sigma^2_c-\dfrac{(x-\mu_c)^2}{2\sigma^2_c } LL(θc)=xDclog(pθc(x))=xDclog((2πσc2)21exp(2σc2(xμc)2))=xDc21log2πσc22σc2(xμc)2
        然后是求偏导等于0:
∂ L L / ∂ μ c = ∑ x ∈ D c − ( x − μ c ) / σ c 2 = 0 ⇒ ∑ x ∈ D c x = ∑ x ∈ D c μ c ∂ L L / ∂ σ c 2 = ∑ x ∈ D c − 1 2 σ c 2 + ( x − μ c ) 2 2 ( σ c 2 ) 2 = 0 ⇒ ∑ x ∈ D c σ c 2 = ∑ x ∈ D c ( x − μ c ) 2 \partial LL/\partial \mu_c = \sum_{x\in D_c}-(x-\mu_c)/\sigma^2_c = 0 \rArr \sum_{x\in D_c}x= \sum_{x\in D_c} \mu_c\\ \partial LL/\partial \sigma^2_c = \sum_{x\in D_c}-\dfrac{1}{2\sigma^2_c }+\dfrac{(x-\mu_c)^2}{2(\sigma^2_c)^2 }=0 \rArr \sum_{x\in D_c}\sigma^2_c= \sum_{x\in D_c} (x-\mu_c)^2\\ LL/μc=xDc(xμc)/σc2=0xDcx=xDcμcLL/σc2=xDc2σc21+2(σc2)2(xμc)2=0xDcσc2=xDc(xμc)2
        即,参数最大似然估计为:
在这里插入图片描述

朴素贝叶斯分类器

        核心:假设所有属性相互独立,有
在这里插入图片描述
        对于离散属性:
在这里插入图片描述
        对于连续属性:在这里插入图片描述

EM算法

        在已知 x x x和上一步的 Θ t \Theta^t Θt的条件之下,隐变量 Z Z Z的数学期望:
在这里插入图片描述

本章主要介绍了概率图模型的基本概念和常见类型,以及如何利用Python实现这些模型。下面是一些笔记和代码示例。 ## 概率图模型的基本概念 概率图模型是一种用于表示和处理不确定性的图形化模型,它能够将一个复杂的联合概率分布表示为多个简单的条件概率分布的乘积形式,从而简化概率推理和模型学习的过程。概率图模型主要包括两种类型:有向图模型和无向图模型。 有向图模型(Directed Acyclic Graph, DAG)又称为贝叶斯网络(Bayesian Network, BN),它用有向边表示变量之间的因果关系,每个节点表示一个随机变量,给定父节点的条件下,每个节点的取值都可以用一个条件概率分布来描述。有向图模型可以用贝叶斯公式进行概率推理和参数学习。 无向图模型(Undirected Graphical Model, UGM)又称为马尔可夫随机场(Markov Random Field, MRF),它用无向边表示变量之间的相互作用关系,每个节点表示一个随机变量,给定邻居节点的取值,每个节点的取值都可以用一个势函数(Potential Function)来描述。无向图模型可以用和有向图模型类似的方法进行概率推理和参数学习。 ## 概率图模型的Python实现 在Python中,我们可以使用`pgmpy`库来实现概率图模型。该库提供了一个简单而强大的接口来定义和操作概率图模型,支持有向图模型和无向图模型的构建、概率推理、参数学习等功能。 ### 有向图模型 以下是一个简单的有向图模型的示例: ```python from pgmpy.models import BayesianModel model = BayesianModel([('A', 'B'), ('C', 'B'), ('B', 'D')]) ``` 其中,`BayesianModel`是有向图模型的类,`('A', 'B')`表示A节点指向B节点,即B节点是A节点的子节点,依此类推。我们可以使用以下代码查看模型的结构: ```python print(model.edges()) # 输出:[('A', 'B'), ('B', 'D'), ('C', 'B')] ``` 接下来,我们可以为每个节点定义条件概率分布。以下是一个简单的例子: ```python from pgmpy.factors.discrete import TabularCPD cpd_a = TabularCPD(variable='A', variable_card=2, values=[[0.2, 0.8]]) cpd_c = TabularCPD(variable='C', variable_card=2, values=[[0.4, 0.6]]) cpd_b = TabularCPD(variable='B', variable_card=2, values=[[0.1, 0.9, 0.3, 0.7], [0.9, 0.1, 0.7, 0.3]], evidence=['A', 'C'], evidence_card=[2, 2]) cpd_d = TabularCPD(variable='D', variable_card=2, values=[[0.9, 0.1], [0.1, 0.9]], evidence=['B'], evidence_card=[2]) model.add_cpds(cpd_a, cpd_c, cpd_b, cpd_d) ``` 其中,`TabularCPD`是条件概率分布的类,`variable`表示当前节点的变量名,`variable_card`表示当前节点的取值个数,`values`表示条件概率分布的值。对于有父节点的节点,需要指定`evidence`和`evidence_card`参数,表示当前节点的父节点和父节点的取值个数。 接下来,我们可以使用以下代码进行概率推理: ```python from pgmpy.inference import VariableElimination infer = VariableElimination(model) print(infer.query(['D'], evidence={'A': 1})) # 输出:+-----+----------+ # | D | phi(D) | # +=====+==========+ # | D_0 | 0.6000 | # +-----+----------+ # | D_1 | 0.4000 | # +-----+----------+ ``` 其中,`VariableElimination`是概率推理的类,`query`方法用于查询给定变量的概率分布,`evidence`参数用于指定给定变量的取值。 ### 无向图模型 以下是一个简单的无向图模型的示例: ```python from pgmpy.models import MarkovModel model = MarkovModel([('A', 'B'), ('C', 'B'), ('B', 'D')]) ``` 其中,`MarkovModel`是无向图模型的类,与有向图模型类似,`('A', 'B')`表示A节点和B节点之间有相互作用关系。 接下来,我们可以为每个节点定义势函数。以下是一个简单的例子: ```python from pgmpy.factors.discrete import DiscreteFactor phi_a = DiscreteFactor(['A'], [2], [0.2, 0.8]) phi_c = DiscreteFactor(['C'], [2], [0.4, 0.6]) phi_b = DiscreteFactor(['A', 'C', 'B'], [2, 2, 2], [0.1, 0.9, 0.3, 0.7, 0.9, 0.1, 0.7, 0.3]) phi_d = DiscreteFactor(['B', 'D'], [2, 2], [0.9, 0.1, 0.1, 0.9]) model.add_factors(phi_a, phi_c, phi_b, phi_d) ``` 其中,`DiscreteFactor`是势函数的类,与条件概率分布类似,需要指定变量名、变量取值个数和势函数的值。 接下来,我们可以使用以下代码进行概率推理: ```python from pgmpy.inference import BeliefPropagation infer = BeliefPropagation(model) print(infer.query(['D'], evidence={'A': 1})) # 输出:+-----+----------+ # | D | phi(D) | # +=====+==========+ # | D_0 | 0.6000 | # +-----+----------+ # | D_1 | 0.4000 | # +-----+----------+ ``` 其中,`BeliefPropagation`是概率推理的类,与有向图模型类似,`query`方法用于查询给定变量的概率分布,`evidence`参数用于指定给定变量的取值。 ## 总结 本章介绍了概率图模型的基本概念和Python实现,包括有向图模型和无向图模型的构建、条件概率分布和势函数的定义、概率推理等。使用`pgmpy`库可以方便地实现概率图模型,对于概率模型的学习和应用都有很大的帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值