CTC学习笔记(一) 简介

CTC(Connectionist Temporal Classification)是用于时序类分类的神经网络方法,尤其适用于语音识别。它允许输入序列与输出序列不需一一对应,简化了数据预处理,减少了强制对齐的需求。CTC通过引入blank状态,解决了不同音素时长不一致的问题,输出序列预测概率,减少了后处理需求。
摘要由CSDN通过智能技术生成
                       

背景

Connectionist temporal classification简称CTC,翻译不太清楚,可以理解为基于神经网络的时序类分类。其中classification比较好理解,表示分类问题;temporal可以理解为时序类问题,比如语音识别的一帧数据,很难给出一个label,但是几十帧数据就容易判断出对应的发音label,这个词也给出CTC最核心的意义;connectionist可以理解为神经网络中的连接。
语音识别声学模型的训练属于监督学习,需要知道每一帧对应的label才能进行有效的训练,在训练的数据准备阶段必须要对语音进行强制对齐。
CTC的引入可以放宽了这种一一对应的限制要求,只需要一个输入序列和一个输出序列即可以训练。有两点好处:不需要对数据对齐和一一标注;CTC直接输出序列预测的概率,不需要外部的后处理。
这里写图片描述
如上图,传统的Framewise训练需要进行语音和音素发音的对齐,比如“s”对应的一整段语音的标注都是s;而CTC引入了blank(该帧没有预测值),

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值