BP神经网络day1

学习来源:https://blog.csdn.net/minfanphd/article/details/116974889

一、BP神经网络基础类 (数据读取与基本结构)

BP(back propagation)神经网络是一种按照误差逆向传播算法训练的多层前馈神经网络,是目前应用最广泛的神经网络。

1、基本原理

人工神经网络无需事先确定输入输出之间映射关系的数学方程,仅通过自身的训练,学习某种规则,在给定输入值时得到最接近期望输出值的结果。作为一种智能信息处理系统,人工神经网络实现其功能的核心是算法。BP神经网络是一种按误差反向传播(简称误差反传)训练的多层前馈网络,其算法称为BP算法,它的基本思想是梯度下降法,利用梯度搜索技术,以期使网络的实际输出值和期望输出值的误差均方差为最小。

基本BP算法包括信号的前向传播和误差的反向传播两个过程。即计算误差输出时按从输入到输出的方向进行,而调整权值和阈值则从输出到输入的方向进行。正向传播时,输入信号通过隐含层作用于输出节点,经过非线性变换,产生输出信号,若实际输出与期望输出不相符,则转入误差的反向传播过程。误差反传是将输出误差通过隐含层向输入层逐层反传,并将误差分摊给各层所有单元,以从各层获得的误差信号作为调整各单元权值的依据。通过调整输入节点与隐层节点的联接强度和隐层节点与输出节点的联接强度以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。

2、结构

BP网络是在输入层与输出层之间增加若干层(一层或多层)神经元,这些神经元称为隐单元,它们与外界没有直接的联系,但其状态的改变,则能影响输入与输出之间的关系,每一层可以有若干个节点。

3、计算过程

BP神经网络的计算过程由正向计算过程和反向计算过程组成。正向传播过程,输入模式从输入层经隐单元层逐层处理,并转向输出层,每一层神经元的状态只影响下一层神经元的状态。如果在输出层不能得到期望的输出,则转入反向传播,将误差信号沿原来的连接通路返回,通过修改各神经元的权值,使得误差信号最小。
1、网络状态初始化
2、前向计算过程

4、应用

目前,在人工神经网络的实际应用中,绝大部分的神经网络模型都采用BP网络及其变化形式。它也是前向网络的核心部分,体现了人工神经网络的精华。

BP网络主要用于以下四个方面。
1、函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数。
2、模式识别:用一个待定的输出向量将它与输入向量联系起来。
3、分类:把输入向量所定义的合适方式进行分类。
4、数据压缩:减少输出向量维数以便于传输或存储。

5、代码

package bp神经网络;
/**
 * @time 2022/5/29
 * @author Liang Huang
 */
 
import java.io.FileReader;
import java.util.Arrays;
import java.util.Random;
import weka.core.Instances;

public abstract class GeneralAnn {

	/**
	 * The whole dataset.
	 */
	Instances dataset;

	/**
	 * Number of layers. It is counted according to nodes instead of edges.
	 */
	int numLayers;

	/**
	 * The number of nodes for each layer, e.g., [3, 4, 6, 2] means that there
	 * are 3 input nodes (conditional attributes), 2 hidden layers with 4 and 6
	 * nodes, respectively, and 2 class values (binary classification).
	 */
	int[] layerNumNodes;

	/**
	 * Momentum coefficient.
	 */
	public double mobp;

	/**
	 * Learning rate.
	 */
	public double learningRate;

	/**
	 * For random number generation.
	 */
	Random random = new Random();

	/**
	 ********************
	 * The first constructor.
	 * 
	 * @param paraFilename The arff filename.
	 * @param paraLayerNumNodes The number of nodes for each layer (may be different).
	 * @param paraLearningRate Learning rate.
	 * @param paraMobp Momentum coefficient.
	 ********************
	 */
	public GeneralAnn(String paraFilename, int[] paraLayerNumNodes, double paraLearningRate,
			double paraMobp) {
		// Step 1. Read data.
		try {
			FileReader tempReader = new FileReader(paraFilename);
			dataset = new Instances(tempReader);
			// The last attribute is the decision class.
			dataset.setClassIndex(dataset.numAttributes() - 1);
			tempReader.close();
		} catch (Exception ee) {
			System.out.println("Error occurred while trying to read \'" + paraFilename
					+ "\' in GeneralAnn constructor.\r\n" + ee);
			System.exit(0);
		} // Of try

		// Step 2. Accept parameters.
		layerNumNodes = paraLayerNumNodes;
		numLayers = layerNumNodes.length;
		// Adjust if necessary.
		layerNumNodes[0] = dataset.numAttributes() - 1;
		layerNumNodes[numLayers - 1] = dataset.numClasses();
		learningRate = paraLearningRate;
		mobp = paraMobp;	
	}//Of the first constructor	
	
	/**
	 ********************
	 * Forward prediction.
	 * 
	 * @param paraInput The input data of one instance.
	 * @return The data at the output end.
	 ********************
	 */
	public abstract double[] forward(double[] paraInput);

	/**
	 ********************
	 * Back propagation.
	 * 
	 * @param paraTarget For 3-class data, it is [0, 0, 1], [0, 1, 0] or [1, 0, 0].
	 *            
	 ********************
	 */
	public abstract void backPropagation(double[] paraTarget);

	/**
	 ********************
	 * Train using the dataset.
	 ********************
	 */
	public void train() {
		double[] tempInput = new double[dataset.numAttributes() - 1];
		double[] tempTarget = new double[dataset.numClasses()];
		for (int i = 0; i < dataset.numInstances(); i++) {
			// Fill the data.
			for (int j = 0; j < tempInput.length; j++) {
				tempInput[j] = dataset.instance(i).value(j);
			} // Of for j

			// Fill the class label.
			Arrays.fill(tempTarget, 0);
			tempTarget[(int) dataset.instance(i).classValue()] = 1;

			// Train with this instance.
			forward(tempInput);
			backPropagation(tempTarget);
		} // Of for i
	}// Of train

	/**
	 ********************
	 * Get the index corresponding to the max value of the array.
	 * 
	 * @return the index.
	 ********************
	 */
	public static int argmax(double[] paraArray) {
		int resultIndex = -1;
		double tempMax = -1e10;
		for (int i = 0; i < paraArray.length; i++) {
			if (tempMax < paraArray[i]) {
				tempMax = paraArray[i];
				resultIndex = i;
			} // Of if
		} // Of for i

		return resultIndex;
	}// Of argmax

	/**
	 ********************
	 * Test using the dataset.
	 * 
	 * @return The precision.
	 ********************
	 */
	public double test() {
		double[] tempInput = new double[dataset.numAttributes() - 1];

		double tempNumCorrect = 0;
		double[] tempPrediction;
		int tempPredictedClass = -1;

		for (int i = 0; i < dataset.numInstances(); i++) {
			// Fill the data.
			for (int j = 0; j < tempInput.length; j++) {
				tempInput[j] = dataset.instance(i).value(j);
			} // Of for j

			// Train with this instance.
			tempPrediction = forward(tempInput);
			//System.out.println("prediction: " + Arrays.toString(tempPrediction));
			tempPredictedClass = argmax(tempPrediction);
			if (tempPredictedClass == (int) dataset.instance(i).classValue()) {
				tempNumCorrect++;
			} // Of if
		} // Of for i

		System.out.println("Correct: " + tempNumCorrect + " out of " + dataset.numInstances());

		return tempNumCorrect / dataset.numInstances();
	}// Of test
}//Of class GeneralAnn

二、固定激活函数的BP神经网络 (1. 网络结构理解)

网络结构和数据通过几个数组确定. 需要结合程序的运行来理解它们.
1、layerNumNodes 表示网络基本结构. 如: [3, 4, 6, 2] 表示:
a) 输入端口有 3 个,即数据有 3 个条件属性. 如果与实际数据不符, 代码 会自动纠正, 见 GeneralAnn.java 81 行.
b) 输出端口有 2 个, 即数据的决策类别数为 2. 如果与实际数据不符, 代码会自动纠正, 见 GeneralAnn.java 82 行. 对于分类问题, 数据是哪个类别, 对应 于输出值最大的端口.
c) 有两个中间层, 分别为 4 个和 6 个节点.
2、layerNodeValues 表示各网络节点的值. 如上例, 网络的节点有 4 层, 即 layerNodeValues.length 为 4. 总结点数为 3 + 4 + 6 + 2 − 15 3 + 4 + 6 + 2 - 153+4+6+2−15 个, 即 layerNodeValues[0].length = 3, layerNodeValues[1].length = 4, layerNodeValues[2].length = 6, layerNodeValues[3].length = 2. Java 支持这种不规则的矩阵 (不同行的列数不同), 因为二维矩阵被当作一维向量的一维向量.
3、layerNodeErrors 表示各网络节点上的误差. 该数组大小与 layerNodeValues 一致.
4、edgeWeights 表示各条边的权重. 由于两层之间的边为多对多关系 (二维数组), 多个层的边就成了三维数组. 例如, 上面例子的第 0 层就应该有 ( 3 + 1 ) × 4 = 16 (3+1) \times 4 = 16(3+1)×4=16 条边, 这里 + 1 +1+1 表示有偏移量 offset. 总共的层数为 4 − 1 = 3 4 - 1 = 34−1=3, 即边的层数要比节点层数少 1. 这也是写程序过程中非常容易出错的地方.
5、edgeWeightsDelta 与 edgeWeights 具有相同大小, 它辅助后者进行调整.
6、代码

package bp神经网络;
/**
 * @time 2022/5/31
 * @author Liang Huang
 */
 
public class SimpleAnn extends GeneralAnn{

	/**
	 * The value of each node that changes during the forward process. The first
	 * dimension stands for the layer, and the second stands for the node.
	 */
	public double[][] layerNodeValues;

	/**
	 * The error on each node that changes during the back-propagation process.
	 * The first dimension stands for the layer, and the second stands for the
	 * node.
	 */
	public double[][] layerNodeErrors;

	/**
	 * The weights of edges. The first dimension stands for the layer, the
	 * second stands for the node index of the layer, and the third dimension
	 * stands for the node index of the next layer.
	 */
	public double[][][] edgeWeights;

	/**
	 * The change of edge weights. It has the same size as edgeWeights.
	 */
	public double[][][] edgeWeightsDelta;

	/**
	 ********************
	 * The first constructor.
	 * 
	 * @param paraFilename The arff filename.
	 * @param paraLayerNumNodes The number of nodes for each layer (may be different).
	 * @param paraLearningRate Learning rate.
	 * @param paraMobp Momentum coefficient.
	 ********************
	 */
	public SimpleAnn(String paraFilename, int[] paraLayerNumNodes, double paraLearningRate,
			double paraMobp) {
		super(paraFilename, paraLayerNumNodes, paraLearningRate, paraMobp);

		// Step 1. Across layer initialization.
		layerNodeValues = new double[numLayers][];
		layerNodeErrors = new double[numLayers][];
		edgeWeights = new double[numLayers - 1][][];
		edgeWeightsDelta = new double[numLayers - 1][][];

		// Step 2. Inner layer initialization.
		for (int l = 0; l < numLayers; l++) {
			layerNodeValues[l] = new double[layerNumNodes[l]];
			layerNodeErrors[l] = new double[layerNumNodes[l]];

			// One less layer because each edge crosses two layers.
			if (l + 1 == numLayers) {
				break;
			} // of if

			// In layerNumNodes[l] + 1, the last one is reserved for the offset.
			edgeWeights[l] = new double[layerNumNodes[l] + 1][layerNumNodes[l + 1]];
			edgeWeightsDelta[l] = new double[layerNumNodes[l] + 1][layerNumNodes[l + 1]];
			for (int j = 0; j < layerNumNodes[l] + 1; j++) {
				for (int i = 0; i < layerNumNodes[l + 1]; i++) {
					// Initialize weights.
					edgeWeights[l][j][i] = random.nextDouble();
				} // Of for i
			} // Of for j
		} // Of for l
	}// Of the constructor

	/**
	 ********************
	 * Forward prediction.
	 * 
	 * @param paraInput The input data of one instance.
	 * @return The data at the output end.
	 ********************
	 */
	public double[] forward(double[] paraInput) {
		// Initialize the input layer.
		for (int i = 0; i < layerNodeValues[0].length; i++) {
			layerNodeValues[0][i] = paraInput[i];
		} // Of for i

		// Calculate the node values of each layer.
		double z;
		for (int l = 1; l < numLayers; l++) {
			for (int j = 0; j < layerNodeValues[l].length; j++) {
				// Initialize according to the offset, which is always +1
				z = edgeWeights[l - 1][layerNodeValues[l - 1].length][j];
				// Weighted sum on all edges for this node.
				for (int i = 0; i < layerNodeValues[l - 1].length; i++) {
					z += edgeWeights[l - 1][i][j] * layerNodeValues[l - 1][i];
				} // Of for i

				// Sigmoid activation.
				// This line should be changed for other activation functions.
				layerNodeValues[l][j] = 1 / (1 + Math.exp(-z));
			} // Of for j
		} // Of for l

		return layerNodeValues[numLayers - 1];
	}// Of forward

	/**
	 ********************
	 * Back propagation and change the edge weights.
	 * 
	 * @param paraTarget
	 *            For 3-class data, it is [0, 0, 1], [0, 1, 0] or [1, 0, 0].
	 ********************
	 */
	public void backPropagation(double[] paraTarget) {
		// Step 1. Initialize the output layer error.
		int l = numLayers - 1;
		for (int j = 0; j < layerNodeErrors[l].length; j++) {
			layerNodeErrors[l][j] = layerNodeValues[l][j] * (1 - layerNodeValues[l][j])
					* (paraTarget[j] - layerNodeValues[l][j]);
		} // Of for j

		// Step 2. Back-propagation even for l == 0
		while (l > 0) {
			l--;
			// Layer l, for each node.
			for (int j = 0; j < layerNumNodes[l]; j++) {
				double z = 0.0;
				// For each node of the next layer.
				for (int i = 0; i < layerNumNodes[l + 1]; i++) {
					if (l > 0) {
						z += layerNodeErrors[l + 1][i] * edgeWeights[l][j][i];
					} // Of if

					// Weight adjusting.
					edgeWeightsDelta[l][j][i] = mobp * edgeWeightsDelta[l][j][i]
							+ learningRate * layerNodeErrors[l + 1][i] * layerNodeValues[l][j];
					edgeWeights[l][j][i] += edgeWeightsDelta[l][j][i];
					if (j == layerNumNodes[l] - 1) {
						// Weight adjusting for the offset part.
						edgeWeightsDelta[l][j + 1][i] = mobp * edgeWeightsDelta[l][j + 1][i]
								+ learningRate * layerNodeErrors[l + 1][i];
						edgeWeights[l][j + 1][i] += edgeWeightsDelta[l][j + 1][i];
					} // Of if
				} // Of for i

				// Record the error according to the differential of Sigmoid.
				// This line should be changed for other activation functions.
				layerNodeErrors[l][j] = layerNodeValues[l][j] * (1 - layerNodeValues[l][j]) * z;
			} // Of for j
		} // Of while
	}// Of backPropagation

	/**
	 ********************
	 * Test the algorithm.
	 ********************
	 */
	public static void main(String[] args) {
		int[] tempLayerNodes = { 4, 8, 8, 3 };
		SimpleAnn tempNetwork = new SimpleAnn("D:/data/iris.arff", tempLayerNodes, 0.01,
				0.6);

		for (int round = 0; round < 5000; round++) {
			tempNetwork.train();
		} // Of for n

		double tempAccuracy = tempNetwork.test();
		System.out.println("The accuracy is: " + tempAccuracy);
	}// Of main
}// Of class SimpleAnn

三、固定激活函数的BP神经网络 (2. 训练与测试过程理解)

1、Forward 就是利用当前网络对一条数据进行预测的过程.
2、BackPropagation 就是根据误差进行网络权重调节的过程.
3、训练的时候需要前向与后向, 测试的时候只需要前向.
4、这里只实现了 sigmoid 激活函数, 反向传播时的导数与正向传播时的激活函数相对应. 如果要换激活函数, 需要两个地方同时换.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

别偷我的猪_09

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值