矩阵分解与应用(张贤达)day1

一、矩阵的基本运算

1、矩阵与向量

1.1、矩阵

由m\timesn个数a_{ij}i = 1, 2\begin{matrix} & \end{matrix}\cdot \cdot \cdot, m; j = 1, 2, \cdot \cdot \cdot, n)排列成的m行n列的数表

\begin{bmatrix} a_{11} & a_{12}&... & a_{1n}\\ a_{21} & a_{22}&... &a_{2n} \\ ... & ...& ...&... \\ a_{m1} & a_{m1}& ...& a_{mn} \end{bmatrix}

称为m\timesn矩阵,记为A = (a_{ij})_{m\times n},其中a_{ij}称为矩阵A的第 i 行第 j 列的元素。

1.2、向量

行向量。在线性代数中,行向量是一个 1×m 的矩阵。

a = \begin{pmatrix} {a_{1}},&{a_{2}},&{a_{3}},& {a_{4}} \end{pmatrix}

列向量。在线性代数中,列向量是一个 n×1 的矩阵。

b = \begin{pmatrix} b_{1}\\ b_{2}\\ b_{3}\\ b_{4} \end{pmatrix}

2、矩阵的基本运算

2.1、基本矩阵

主对角线:在一个n\timesn的正方矩阵A上,主对角线指从矩阵左上角到右下角沿 i = jj = 1, 2, ..., n想连接的线段。

交叉对角线:也称次对角线。从矩阵A右上角到左下角相连接的线段。次对角线垂直主对角线。

对角矩阵:主对角线以外的元素全部为零的n\timesn矩阵,记为

D = diag({d_{11}}, {d_{22}}, ..., {d_{nn}})

单位矩阵:对角矩阵的主对角线元素全为1,记为

{I_{n\times n}}

零矩阵:矩阵中的元素都为零,则被称为零矩阵,记为

^{O_{m\times n}}

冥等矩阵:矩阵A_{n\times n},若A^{2} = AA = A,则A_{n\times n}为冥等矩阵

对合矩阵: 矩阵A_{n\times n},若A^{2} = AA = I,则A_{n\times n}为对合矩阵

基本向量:只有一个元素为1,其于元素全为0的列向量被称为基本向量。如下

e = \begin{pmatrix} 1\\ 0\\ 0\\ 0 \end{pmatrix}

矩阵的内积:矩阵A与矩阵B的内积记作<A, B >,定义为

< A, B> = A^{H} B

矩阵的指数:矩阵A的指数记为\exp (A)或者e^{A},定义为

\exp (A) = \sum_{k=0}^{\infty }\frac{1}{k!}A^{k}

矩阵的对数:矩阵A的对数记为\log ({I_{n}} - A),定义为

\log (I_{n} - A) = -\sum_{k=0}^{\infty }\frac{1}{k!}A^{k}

矩阵的导数:如果矩阵A的元素a_{ij}都是参数t的函数,则矩阵的导数定义为

\frac{dA}{dt} = A = \begin{bmatrix} \frac{da_{11}}{dt} & \frac{da_{12}}{dt}& ...& \frac{da_{1n}}{dt}\\ \frac{da_{21}}{dt}& \frac{da_{22}}{dt}& ...& \frac{da_{2n}}{dt}\\ ...& ...& & ...\\ \frac{da_{m1}}{dt}& \frac{da_{m2}}{dt}& ...& \frac{da_{mn}}{dt} \end{bmatrix}

2.2、基本运算

矩阵加法:两个m\timesn的矩阵A=[a_{ij}]B=[b_{ij}]的和记为A+B。定义为:[A+B]_{ij}=a_{ij}+b_{ij}

矩阵与标量相乘A=[a_{ij}]是一个m\timesn的矩阵,\alpha为标量。乘积aA定义为:[\alpha A]_{ij}=\alpha a_{ij}

 加法交换律A+B =B+A

 加法结合律(A+B)+C=A+(B+C)

 乘法结合律:若A为m\timesn的矩阵,B为n\timesp的矩阵,C为p\timesq的矩阵,则有A(BC)=(AB)C

 乘法左分配率:若A和B均为m\timesn的矩阵,C为n\timesp的矩阵,则有(A+B)C=AC+BC

 乘法右分配律:若A为m\timesn的矩阵,B和C均为n\timesp的矩阵,则有A(B+C)=AB +AC

(A+B)^{*}=A^{*}+B^{*}

(A+B)^{T}=A^{T}+B^{T}

(A+B)^{H}=A^{H}+B^{H}。(注:A^{H}为共轭转置矩阵,又称为Hermitian伴随)

(AB)^{T}=B^{T}A^{T}

(AB)^{H}=B^{H}A^{H}

(AB)^{-1}=B^{-1}A^{-1}

(A^{*})^{-1}=(A^{-1})^{*}

(A^{T})^{-1}=(A^{-1})^{T}

(A^{H})^{-1}=(A^{-1})^{H}

2.3、向量的线性相关性与非奇异矩阵

向量的线性表示:给定向量组A = (a_{1}, a_{2},a_{3}, ... a_{n}) 以及向量b ,若存在一组数 k_{1}, k_{2}, ..., k_{n} ,使得

 b = k_{1}a_{1}+k_{2}a_{2}+ .. +k_{n}a_{n}

 则称向量b可由向量组 A 线性表示,也称向量b是向量组A 的一个线性组合, k_{1}, k_{2}, ..., k_{n}称为这个线性组合的系数。 

线性相关:如果k_{1}, k_{2}, ..., k_{n}不全为0,使得k_{1}a_{1}+k_{2}a_{2}+ .. +k_{n}a_{n} = 0,则向量组A是线性相关。r_{1}, r_{2}, ..., r_{m}

线性无关关: 如果k_{1}, k_{2}, ..., k_{n}全为0,使得k_{1}a_{1}+k_{2}a_{2}+ .. +k_{n}a_{n} = 0,则向量组A为线性无关。

非奇异矩阵:一个n\timesn矩阵A是非奇异,当且仅当矩阵方程Ax = 0只有零解x=0。若A不是奇异的,则称A奇异。

定理:n\timesn矩阵 A = \begin{bmatrix} a_{1} & a_{2}& ... & a_{n} \end{bmatrix} 是非奇异的,当且仅当它的n个列向量a_{1}, a_{2}, ..., a_{n}线性无关。

2.4、初等行变换与阶梯型矩阵

初等运算:涉及矩阵行与行之间的简单运算。

初等运算:也称初等行变换。矩阵A _{m\times n}的行向量分别为r_{1}, r_{2}, ...r_{m}

        (1) 互换矩阵的任意两行,如r_{p\rightarrow }r_{q},称为I型初等行变换。

        (2) 一行元素同乘一个非零常数a,如ar_{p}\rightarrow r_{q},称为\mathbb{I}型初等行变换。

        (3) 将第p行元素同乘一个非零常数\beta后,加给第q行,即\beta r_{p} + r_{q} \rightarrow r_{q},称为 型初等行变换。

矩阵等价:矩阵A_{m\times n}经过一系列初等行运算,变换成矩阵B_{m\times n},则矩阵A和矩阵B等价。

 阶梯型矩阵:矩阵A_{m\times n},若

        (1) 全部由零组成的所有行都位于矩阵的底部。

        (2) 每一个非零行的首项元素总是出现在上一个非零行的首项元素的右边。

        (3) 首项元素下面的同列元素全部为零。

列如:如下阶梯矩阵

A = \begin{bmatrix} 1 & * & *\\ 0& 3& *\\ 0& 0 & 0\\ 0& 0& 0 \end{bmatrix}

简约阶梯型:若每一非零行的首项元素等于1(即为首一元素),并且每一个首一元素也是它所在列唯一的非零元素。

例如:如下简约阶梯型

A = \begin{bmatrix} 1& -2& 0& -1& 3\\ 0& 0& 5& 10& 8\\ 0& 0& 0& 0& 0 \end{bmatrix}

2.5、基于初等行变换的矩阵方程求解

下面讨论如何利用初等行变换,对矩阵方程求解。

        对一个n\timesn矩阵方程Ax = b,其增广矩阵B = [A, b]为n\times(n + 1)。若对增广矩阵B使用初等行变换,使得最左边变成一个n\timesn单位矩阵,则变换后的增广矩阵的第n+1列即给出原矩阵方程Ax = b的解x。这种方程称为高斯消去法Gauss-Jordan消去法

例:用高斯消去法求解下列线性方程组

\left\{\begin{matrix} x_{1}+x_{2}+2x_{3}=6\\ 3x_{1}+4x_{2}-x_{3}=5\\ -x_{1}+x_{2}+x_{3}=6 \end{matrix}\right.

首先写出方程组的增广矩阵

 B = \begin{bmatrix} 1& 1& 2& 6\\ 3& 4& -1& 5\\ -1& 1& 1& 2 \end{bmatrix}

 第2行减去第1行的3倍,得

\begin{bmatrix} 1 & 1& 2 &6 \\ 0 & 1& -7& -13\\ -1& 1 & 1& 2 \end{bmatrix}

 第1行加到第3行,得

\begin{bmatrix} 1& 1 & 2 &6 \\ 0& 1&-7 &-13 \\ 0& 2& 3& 8 \end{bmatrix}

第1行减去第2行,得

di\begin{bmatrix} 1 & 0& 9& 19\\ 0& 1& -7& -13\\ 0& 2& 3& 8 \end{bmatrix}

第3行减去第2行得2倍,得

\begin{bmatrix} 1& 0& 9& 19\\ 0& 1& -7& -13\\ 0& 0& 17& 34 \end{bmatrix}

第3行乘以1/17,得

\begin{bmatrix} 1 & 0 & 9&19 \\ 0& 1& -7& -13\\ 0& 0& 1& 2 \end{bmatrix}

 第1行减去第3行的9倍,得

\begin{bmatrix} 1 & 0& 0& 1\\ 0& 1& -7& -13\\ 0 & 0& 1& 2 \end{bmatrix}

 第3行乘以7后,再加到第2行,得

\begin{bmatrix} 1& 0& 0& 1\\ 0& 1& 0& 1\\ 0& 0& 1& 2 \end{bmatrix}

最后,通过高斯消去法得到方程组得解为x_{1} = 1, x_{2} = 1, x_{3} = 2

        对于m\timesn的矩阵方程Ax = b用初等行变换进行求解。步骤如下:

1、构造增广矩阵B = \begin{bmatrix} A ,& b \end{bmatrix}

2、使用高斯消去法将增广矩阵B简化成阶梯型矩阵,它与原增广矩阵等价。

3、从简化的矩阵得到对应的线性方程组,它与原线性方程组等价。

4、得到新的线性方程组的通解。

        例:求解下列线性方程组

\left\{\begin{matrix} 2x_{1}+2x_{2}-x_{3} = 1\\ -2x_{1}-2x_{2}+4x_{3} = 1\\ 2x_{1}+2x_{2}+5x_{3} = 5\\ -2x_{1}-2x_{2}-2x_{3} = -3 \end{matrix}\right.

增广矩阵为

B = \begin{bmatrix} 2 & 2 & -1 & 1\\ -2 & -2& 4 & 1\\ 2 & 2& 5& 5\\ -2 & -2& -2 & -3 \end{bmatrix}

第1行元素乘以1/2,使第1个元素为1:

\begin{bmatrix} 1 & 1& -\frac{1}{2} & \frac{1}{2}\\ -2& -2& 4 &1 \\ 2& 2 & 5&5 \\ -2& -2& -2& -3 \end{bmatrix}

使用初等行变换,使第2~4行的第1个元素都变成0:

\begin{bmatrix} 1 & 1& -\frac{1}{2}& \frac{1}{2}\\ 0& 0& 3 & 2\\ 0& 0 & 6&4 \\ 0& 0& -3& -2 \end{bmatrix}

第2行元素乘以1/3,使得其第3列元素等于1,得:

\begin{bmatrix} 1 & 1& -\frac{1}{2} & \frac{1}{2}\\ 0 & 0& 1 & \frac{2}{3}\\ 0& 0& 6 &4 \\ 0 & 0& -3 & -2 \end{bmatrix}

利用初等行变换,使第2行首项元素1的上班和下边元素全部变为0,得:

\begin{bmatrix} 1 & 1 &0 & \frac{5}{6}\\ 0& 0& 1&\frac{2}{3} \\ 0& 0 & 0 &0 \\ 0 & 0 & 0 & 0 \end{bmatrix}

对应得线性方程组为

x_{1} + x_{2} = \frac{5}{6}

x_{3} = \frac{2}{3}

该方程组有无穷多组解,其通解为x_{1} = \frac{5}{6} - x_{2}, x_{3} = \frac{2}{3}。若x_{2} = 1,则一特解为x_{1} = -\frac{1}{6}, x_{2} = 1   和x_{3} = -\frac{2}{3}

        如果线性方程组的右边全部等于零,即

\left.\begin{matrix} a_{11}x_{1} + a_{12}x_{2} + ... + a_{1n}x_{n} = 0\\ a_{21}x_{1} + a_{22}x_{2} + ... + a_{2n}x_{n} = 0\\ ...\\ a_{m1}x_{1} + a_{m1}x_{2} + ... + a_{mn}x_{n} = 0 \end{matrix}\right\}

则称之为齐次线性方程组

        显然,x = [0, 0, ..., 0]^{T}是任何齐次线性方程组的一个解。这种全零的解称为平凡解。平凡解意以外的任何其它解称为非平凡解。

        齐次线性方程组一定有解,因为它至少有一个平凡解。齐次线性方程组的解只有两种可能:(1)只有唯一的平凡解;(2)除了平凡解外,还有无穷多个非平凡解。

3、向量空间、内积空间与线性映射

3.1、集合的基本概念

集合:某些元素的集体表示。集合通常用花括号表示为S = \begin{Bmatrix} \cdot \end{Bmatrix},花括号内为集合S的元素。如果集合的元素只有几个,通常便在花括号内罗列出所有的元素,例如S = \begin{Bmatrix} a, b, c, d \end{Bmatrix}。若S是满足某种性质p(x)的元素x的集合,则记为S = \begin{Bmatrix} x : p(x) \end{Bmatrix}

集合运算相关的几个数学符号:

\forall:表示"对所有...";

x \in A:读作"x属于集合A:",即x是集合A的一个元素 ;

x \notin A:表示x不是集合A的元素;

\ni : 代表"使得";

\exists:代表"存在";

A \Rightarrow B 表示"若条件A,则有结果B"或"A意味着B"。

\varnothing:空集。集合中没有任何元素。

集合的基本运算

A \subseteq B:A是B的一个子集。x \in A \Rightarrow x \in B

A \subset B:A是B的一个真子集 。

A = B:A等于B。x \in A \Leftrightarrow x \in B

A \cup B:A和B的并集。X = A\cup B = {x\in X: x \in Ax \in B}

A \cap B:A和B的交集。X = A \cap B = {x \in X: x \in A 和 x \in B}

Z = A + B:表示集合A和集合B的和集。Z = A + B = {z = x + y \in Z: x \in A, x \in B}

Z = A - B:集合差,也称差集。Z = A - B = {x \in X: x\in A, 但x \notin B}。差集也可用X = A \setminus B表示。

补集:子集合A再集合X中的补集定义为A^{c} = X - A = {x \in X: x \notin A}。

X和Y为集合,且x \in Xy \in Y,则所有有序对(x, y)的集合记为X \times Y,称为集合X和Y的笛卡儿积,即y + 0 = y

X \times Y = {(x, y): x \in X, y \in Y{}}

类似地,X_{1} \times X_{2} \times \cdot \cdot \cdot \times X_{n}表示n个集合X_{1}, X_{2}, \cdot \cdot \cdot , X_{n}的笛卡儿积,其元素为有序n元组(x_{1}, x_{2}, \cdot \cdot \cdot , x_{n})

3.2、向量空间

定义:以向量为元素的集合V称为向量空间,若加法运算定义为两个向量之间的加法,乘法运算定义为向量与标量域S中的标量之间的乘法,并且对于向量集合V中的向量x, y, z和标量域S中的标量a_{1}, a_{2},以下两个闭合性和关于加法及乘法的八个公理满足:

闭合性:

(c1) 若x\in Vy\in V,则x + y \in V,即V在加法下是闭合的,简称加法的闭合性。

(c2) 若a_{1}是一个标量,y \in V,则a_{1}y \in V,即V在标量乘法下是闭合的,简称标量乘法的闭合性。

加法的公理:

(a1) x + y = y + x, \forall x, y \in V,称为加法的交换律a, ba, b

(a2) x + (y + w) = (x + y) + w\forall x, y, w \in V,称为加法的结合律

(a3) 在V中存在一个零向量0,使得对于任意向量y \in V,恒有y + 0 = y(零向量的存在性)。

(a4) 给定一个向量y \in V,纯真另一个向量-y \in V使得y + (-y) = 0 = (-y) + y(负向量的存在性)。

标量乘法的公理

(s1) a(by) = (ab)y 对所有向量y和所有标量a, b成立,称为标量乘法的结合律

(s2) a(x + y) = ax + ay对所有的向量x, y \in V和标量a成立,称为标量乘法的分配律。

(s3) (a + b)y = ay + by对所有向量y和所有标量a, b成立,称为标量乘法的分配律。

(s4) 1y = y对所有y \in V成立,称为标量乘法大单位律。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

别偷我的猪_09

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值