自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(28)
  • 收藏
  • 关注

原创 边缘检测算子对比:robert canny prewitt sobel laplace

然而,由于其卷积核权重分布相对均匀,对边缘的响应强度不如 Sobel 算子,边缘定位精度也相对较低,在实际应用中常用于对实时性和抗噪性有一定要求的一般性边缘检测任务。但由于其卷积核尺寸较小,仅考虑了 2×2 邻域内的像素关系,对噪声非常敏感,检测到的边缘不够连续,定位精度较低,通常适用于噪声较少的图像边缘检测。拉普拉斯算子具有各向同性,能够检测任意方向的边缘;Robert 算子是一种简单的一阶边缘检测算子,采用交叉差分的方法计算图像的梯度,通过检测图像中像素灰度在对角线方向上的变化来识别边缘。

2025-05-01 16:20:03 868

原创 协方差交互融合:多源数据协同优化的关键技术

在多传感器信息融合、目标跟踪、机器人协作等领域,不同传感器采集的数据往往存在噪声、误差以及数据不一致等问题,如何高效整合这些数据,获取更准确可靠的信息,成为关键难题。协方差交互融合算法凭借其独特的优势,为解决这一问题提供了有效途径,通过巧妙融合多个估计值及其协方差矩阵,显著提升了系统的估计精度与可靠性。

2025-04-26 11:57:58 801

原创 卡尔曼滤波与平滑:从最优估计到轨迹精修的深度探索

传统滤波方法往往难以兼顾预测精度与实时性,而卡尔曼滤波与平滑技术的结合,通过 “先估计后优化” 的策略,实现了对目标状态的精准刻画。例如在无人驾驶场景中,该技术组合可将轨迹预测误差降低 40%,显著提升车辆避障的安全性与舒适性。

2025-04-25 09:55:32 667

原创 简单场景下的目标关联算法:GNN全局最近邻与匈牙利算法

目标与测量关联算法通过建立观测数据与目标轨迹的对应关系,为后续的状态估计和轨迹预测提供基础。以智能交通系统为例,高效的关联算法可使多目标跟踪准确率提升,显著优化交通流量预测与异常事件检测。在智能监控、无人驾驶、空中交通管制等领域,多目标跟踪系统面临着。为m个测量到n个目标的一一映射。的距离,则最优关联解。

2025-04-24 15:36:25 1030

原创 DOA 测角算法解析:MUSIC CAPON DML DBF FFT

它对接收信号协方差矩阵进行特征分解,将特征向量划分为信号子空间和噪声子空间,利用二者正交关系构造空间谱函数,通过谱峰搜索确定信号 DOA。:CAPON 算法也称为最小方差无失真响应(MVDR)算法,其核心是在保证期望信号方向增益为 1 的约束下,最小化阵列输出功率,从而得到空间谱估计。:FFT 算法利用傅里叶变换将时域信号转换为频域信号,结合均匀线阵中阵元输出信号相位差与 DOA 的关系,通过分析频域信号谱峰估计 DOA。对相干信号有一定处理能力,但计算复杂度较高,且对协方差矩阵估计准确性要求高。

2025-04-24 09:14:10 1197

原创 无线定位算法:AOA TOA TDOA RSSI解析

AOA 算法通过测量信号到达接收端天线阵列时的角度信息来确定目标位置。假设接收端有一个由 N 个天线组成的阵列,第 n 个天线接收到的信号与参考天线接收到的信号之间存在相位差ΔφnΔφn​,在远场假设下,对于均匀线阵,信号入射角θ\thetaθΔφn2πdλnsin⁡θΔφn​λ2πd​nsinθ,其中 d 为天线间距,λ\lambdaλ为信号波长。通过对多个天线的相位差进行分析,可计算出信号的到达角度。

2025-04-23 08:58:14 1304

原创 自适应卡尔曼滤波(AKF):动态环境下的最优估计技术

自适应卡尔曼滤波通过打破 “固定参数” 的桎梏,成为动态不确定环境下的最优估计利器。其核心在于。

2025-04-22 08:56:22 1104

原创 目标跟踪中的聚类算法:DBSCAN Kmeans GMM

DBSCAN 基于密度可达性定义簇,核心参数为邻域半径ϵ\epsilonϵ和最小点数MinPtsMinPtsϵ\epsilonϵ- 邻域:点 p 的ϵ\epsilonϵ- 邻域定义为所有与 p 距离小于等于ϵ\epsilonϵ的点集合,即Nϵpq∈Z∣dpq≤ϵNϵ​pq∈Z∣dpq≤ϵ,其中d⋅⋅d⋅⋅为距离度量(如欧氏距离)。核心点:若∣Nϵp∣≥MinPts∣Nϵ​p∣≥MinPts。

2025-04-21 08:45:30 912

原创 基数平衡多伯努利滤波器(CB-MBM):基于约束优化的多目标数量与存在概率联合估计方法

CB-MBM 引入基数平衡约束min⁡PNnKLPN∥QNλEN−λ02μVarN−σ022minPNn​KLPN​QNλEN−λ0​2μVarN−σ02​2QNQ(N)QN为基于场景先验的基数分布(如泊松分布);λ0\lambda_0λ0​和σ02\sigma_0^2σ02​为期望和方差的约束阈值;λμλμ为拉格朗日乘数,控制约束强度。

2025-04-20 12:01:16 533

原创 基数概率假设密度滤波器(CPHD):基于二阶矩的多目标数量与状态联合建模剖析

基数概率假设密度(CPHD):CPHD 函数Dcx1x2Dcx1​x2​定义为目标集XX的二阶矩,即两个任意点x1x_1x1​和x2x_2x2​同时属于目标集的期望:Dcx1x2E∣X∩x1∣⋅∣X∩x2∣Dcx1​x2​E∣X∩x1​∣⋅∣X∩x2​∣当x1x2xx1​x2​x时,退化为 PHD 函数DxDcxxDxDcxx。

2025-04-19 09:00:20 1106

原创 概率多假设跟踪(PMHT):多目标跟踪中的概率软关联与高效跟踪算法解析

时间序列k12Kk12K(共K帧)。目标状态:第i个目标在帧k的状态为xki∈Rdxki​∈RdxkiFkxk−1iwkiwki∼N0Qkxki​Fk​xk−1i​wki​wki​∼N0Qk​其中FkF_kFk​为状态转移矩阵,QkQ_kQk​为过程噪声协方差。观测模型:帧k的观测zkm∈Rrzkm​∈RrzkmHkx。

2025-04-18 18:52:44 1004 2

原创 概率假设密度滤波器(PHD):多目标跟踪中的存在性与状态联合估计理论解析

目标集表示Xx1x2xNXx1​x2​xN​xi∈Rdxi​∈Rd为目标状态(如位置、速度),NNN为目标数(允许N0N=0N0,即空集)。PHD 滤波器基于随机有限集理论,通过概率假设密度函数实现对多目标数量和状态的联合估计,避免了传统算法中复杂的身份关联问题,在复杂场景下具有显著优势。与 JPDA 和 MHT 相比,PHD 滤波器在目标数量估计、杂波适应性和计算效率上具有独特优势。

2025-04-17 09:18:43 1112

原创 广义标签多伯努利滤波器(GLMB):多目标跟踪中的动态身份维护理论与算法解析

目标集表示Xx1l1x2l2xNlNX{(x1​l1​x2​l2​xN​lN​)}xi∈Rdxi​∈Rd为目标状态(如位置、速度),li∈Lli​∈L为唯一标签(可数无限集,如自然数序列),N 为目标数(允许N0N=0N0,即空集)。GLMB 通过广义化标签多伯努利分布,将多目标跟踪从 “状态估计” 提升至 “动态身份 - 状态联合建模”,成为复杂场景下精准跟踪的核心技术。

2025-04-16 09:12:44 826

原创 标签多伯努利滤波器(LMB):多目标跟踪的精准身份守护者

在多目标跟踪领域,传统的多伯努利滤波器(MBF)虽然在一定程度上解决了多目标跟踪中的数据关联组合爆炸、存在性联合估计缺失以及杂波鲁棒性不足等问题,但随着应用场景的日益复杂,例如在大型体育赛事的人群追踪、大规模物流仓库的货物搬运机器人跟踪等场景中,仅仅知道目标的存在与否和状态信息已经不够,还需要准确地识别每个目标的身份,以确保对目标的持续、正确跟踪。具备良好的抗干扰能力,在仓库复杂的电磁环境和货物遮挡等情况下,通过标签的稳定性和状态更新机制,依然能够准确跟踪每个机器人的运动轨迹,保障物流作业的顺畅进行。

2025-04-15 17:37:16 544

原创 目标跟踪中的 CV、CA、CT 模型:运动建模核心理论解析

CV、CA、CT 模型是目标跟踪的 “动力学语言”,其核心价值在于通过数学假设将复杂运动转化为可计算的状态转移方程。实际应用中,需结合目标特性(如是否转弯、加速频繁度)、传感器精度(如雷达采样率)及场景约束(如实时性要求)选择模型,并通过多模型融合、参数自适应等技术提升鲁棒性。下一阶段,随着无人系统智能化发展,融合物理模型与数据驱动的新型运动建模方法将成为研究热点。

2025-04-14 11:35:43 906

原创 交互式多模型(IMM)算法:复杂动态系统的最优跟踪方案

推荐场景:目标运动模式可枚举、模型切换概率可先验设定对比建议简单匀速场景:单模型 KF 足够(计算量小)强机动场景:IMM vs 粒子滤波(IMM 在高斯噪声下精度更高)非线性场景:优先 EKF-IMM 或 UKF-IMM未来趋势:与深度学习结合(端到端模型集优化)、边缘计算轻量化部署IMM的matlab代码见https://m.tb.cn/h.6TEfcfL?

2025-04-14 11:33:48 477

原创 泊松多伯努利混合(PMBM)滤波器:复杂多目标场景的最优跟踪方案

在密集城市交通场景中,PMBM 滤波器可以准确地跟踪多个车辆的运动,即使在目标相互遮挡和高杂波环境下,也能保持较高的跟踪精度和可靠性。:在动态变化的环境中,如城市环境的快速变化和战场环境的不确定性,如何使 PMBM 滤波器快速适应环境变化,保持良好的跟踪性能是一个挑战。:随着目标数量的增加,PMBM 滤波器的计算复杂度迅速增长,如何在保持跟踪精度的同时降低计算复杂度是一个亟待解决的问题。:设计更有效的目标初始化方法,快速准确地检测和跟踪新出现的目标,减少初始化时间和误差。

2025-04-13 11:20:53 563

原创 摄像头在自动驾驶中的核心应用:感知算法与技术方案深度解析

摄像头作为自动驾驶的 “视觉中枢”,其价值不仅在于硬件性能,更依赖算法体系的持续创新。基于检测的跟踪技术凭借成熟度支撑了当前主流方案,而端到端算法则代表了未来复杂场景的突破方向。随着二者在轻量化、鲁棒性、多模态融合上的技术迭代,摄像头将在自动驾驶从辅助走向全自主的进程中,扮演愈发关键的角色 —— 不仅是 “眼睛”,更是连接感知与决策的智能桥梁。

2025-04-12 10:20:24 1043

原创 伯努利滤波器:单目标存在性不确定场景的最优跟踪方案

目标存在性模糊检测概率不足杂波干扰严重伯努利滤波器基于随机有限集(RFS)理论,创造性地将目标 “存在与否” 的二项分布与状态估计相结合。以无人机监测场景为例,在森林等复杂环境导致传感器检测能力受限的情况下,该算法能有效抑制虚警干扰、提升漏检恢复效率,在低信噪比条件下展现出显著的鲁棒跟踪性能,成为此类挑战性场景中的核心技术方案。

2025-04-11 08:36:14 578

原创 过程噪声与测量噪声:卡尔曼滤波的噪声建模核心

先验与后验结合:初始参数基于传感器手册和动力学知识,再通过实测数据微调维度匹配Q\mathbf{Q}Q的维度与状态向量一致,R\mathbf{R}R的维度与观测向量一致动态适应:复杂场景中使用时变噪声矩阵(如根据目标机动强度实时调整Q\mathbf{Q}Q可视化验证:绘制创新序列(zk−Hxk∣k−1zk−Hxk∣k−1)的均值和方差,确保其接近零均值白噪声正确的噪声建模是卡尔曼滤波与 IMM 算法成功的关键,其核心在于平衡模型预测与传感器观测的信任度。

2025-04-09 07:55:17 1345

原创 自动驾驶传感器三剑客:摄像头、毫米波雷达与激光雷达技术详解

暴雨天摄像头图像模糊隧道内毫米波雷达易受金属反射干扰激光雷达在强光下性能下降多传感器融合通过整合摄像头、毫米波雷达、激光雷达的优势,构建 360° 环境感知体系,成为 L3 级以上自动驾驶的标配方案。

2025-04-08 08:45:50 851

原创 多假设跟踪(MHT):复杂场景下的终极目标追踪方案

多假设跟踪(MHT)通过维护多个可能的关联假设树,成功解决了这些难题,成为复杂场景下的首选方案。

2025-04-07 09:32:58 781

原创 联合概率数据关联(JPDA):复杂多目标跟踪场景的进阶解决方案

多目标跟踪的核心挑战在于**数据关联冲突**:当目标数量增加且存在交叉轨迹、遮挡或密集杂波时,传统单目标跟踪算法(如最近邻算法、概率数据关联算法 PDA)会因以下局限导致性能下降:

2025-04-06 09:07:38 1104

原创 概率数据关联(PDA):多目标跟踪的基石算法

1. 为什么需要概率数据关联?2. 核心思想与假设条件3. 算法核心:概率分配与状态更新4. 典型应用场景与优势5. 挑战与改进方向6. 下期预告

2025-04-05 08:45:15 964

原创 粒子滤波(PF):非高斯环境下的鲁棒状态估计

传统卡尔曼滤波家族(EKF/UKF)依赖高斯分布假设和线性化近似,在以下场景中存在固有缺陷:- 非高斯噪声:如突发脉冲噪声、多模态分布噪声- 强非线性系统:如混沌系统、离散跳跃过程- 高维状态空间:如多目标跟踪、图像序列分析

2025-04-04 13:39:13 691

原创 无迹卡尔曼滤波(UKF):非线性系统的高效估计方法

具体而言,UKF 通过选取一组 sigma 点(确定性采样点)来捕获状态分布的均值和协方差,利用非线性函数直接传播这些点,再通过加权统计得到新的均值和协方差。例如,在无人机大角度机动或机器人高维动力学建模中,非线性函数的高阶项会导致线性化误差显著增大,甚至引发滤波发散。在无人机飞行中,非线性的运动学方程(如四元数姿态更新)和传感器噪声(如陀螺仪漂移)会导致 EKF 估计精度下降。尽管无迹卡尔曼滤波在非线性估计中表现出色,但其对高斯噪声的依赖和计算复杂度限制了在非高斯环境中的应用。

2025-04-04 08:47:28 1099

原创 扩展卡尔曼滤波(EKF):解锁非线性系统的状态估计密码

目录为什么需要扩展卡尔曼滤波,与卡尔曼滤波的区别?扩展卡尔曼滤波的三大前提条件算法核心目标跟踪中的典型应用场景下期预告。

2025-04-03 15:45:00 1364

原创 卡尔曼滤波从入门到实践:理解目标跟踪的核心算法

卡尔曼滤波通过最优估计理论,创造性地将系统模型预测与传感器观测有机融合。以自动驾驶为例,该算法能将摄像头、激光雷达和 GPS 数据实时融合,实现厘米级轨迹预测,为决策系统争取宝贵的 200ms 反应时间。

2025-04-03 11:20:32 692

多目标跟踪联合概率数据关联C++程序

多目标跟踪联合概率数据关联C++程序 对视频中的多个行人目标进行跟踪

2025-04-12

多目标跟踪概率假设密度C++程序

多目标跟踪概率假设密度C++程序

2025-04-12

目标跟踪 kf+ekf+ukf+pf

目标跟踪 卡尔曼滤波 扩展卡尔曼滤波 无迹卡尔曼滤波 粒子滤波 效果对比

2025-04-06

扩展卡尔曼滤波目标跟踪matlab代码

此 Matlab 代码用扩展卡尔曼滤波(EKF)对目标进行跟踪。状态转移函数为线性,观测函数是非线性。在仿真中生成真实状态和观测值,EKF 通过线性化观测函数的雅可比矩阵进行状态估计,最后绘制真实与估计轨迹对比跟踪效果。

2025-04-05

无迹卡尔曼滤波目标跟踪matlab程序

该Matlab程序演示二维目标跟踪,利用无迹卡尔曼滤波(UKF)处理含噪声的运动模型和观测数据。适合掌握卡尔曼滤波基础的学生、研究人员及工程师。

2025-04-05

卡尔曼滤波运动模型-2

卡尔曼滤波运动模型-2

2025-04-03

卡尔曼滤波误差比较程序

卡尔曼滤波误差比较程序

2025-04-03

卡尔曼滤波计算均方根误差程序

卡尔曼滤波计算均方根误差程序

2025-04-03

卡尔曼滤波计算误差程序

卡尔曼滤波计算误差程序

2025-04-03

卡尔曼滤波可视化结果程序

卡尔曼滤波可视化结果程序

2025-04-03

卡尔曼滤波运动模型程序

卡尔曼滤波运动模型程序

2025-04-03

卡尔曼滤波生成航迹测量程序

卡尔曼滤波生成航迹测量程序

2025-04-03

卡尔曼滤波生成目标真实轨迹程序

卡尔曼滤波生成目标真实轨迹程序

2025-04-03

卡尔曼滤波实现程序预测+更新

卡尔曼滤波实现程序..

2025-04-03

卡尔曼滤波主程序main.m

卡尔曼滤波主程序main.m

2025-04-03

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除