排布二进制网格的最少交换次数
给你一个 n x n 的二进制网格 grid,每一次操作中,你可以选择网格的 相邻两行 进行交换。
一个符合要求的网格需要满足主对角线以上的格子全部都是 0 。
请你返回使网格满足要求的最少操作次数,如果无法使网格符合要求,请你返回 -1 。
主对角线指的是从 (1, 1) 到 (n, n) 的这些格子。
https://leetcode.cn/problems/minimum-swaps-to-arrange-a-binary-grid/
贪心的思路,先预计算好每一行的后缀0的数量,然后依次查找每一行不符合要求的情况,然后找最近的符合要求的行,并且进行交换。
- 计算右侧“0”的个数,存为数组
- 主对角线以上的格子全部都是 0 = 网格维度n - 数组索引 - 1
- 数组中最近的满足第二点的索引即可得到最少交换次数
package com.huawei.it;
import java.util.ArrayList;
import java.util.List;
public class Example {
public static void main(String[] args) {
int[][] grid = new int[][]{
{1, 0, 0},
{0, 0, 1},
{1, 0, 0}};
int[][] grid1 = new int[][]{
{0, 0, 1},
{1, 1, 1},
{0, 0, 0}};
System.out.println(minSwaps(grid));
System.out.println(minSwaps(grid1));
}
/**
* 计算最少交换次数,若无则返回-1[简单模拟+逻辑转化]
*
* @param grid 二进制网格
* @return 最少交换次数或-1
*/
public static int minSwaps(int[][] grid) {
List<Integer> list1 = new ArrayList<>();
for (int[] ints : grid) {
int numZero = 0;
for (int j = ints.length - 1; j >= 0; j--) {
if (ints[j] == 1) {
break;
}
numZero++;
}
list1.add(numZero);
}
int result = 0;
// 最少步数
for (int i = 0; i < list1.size(); i++) {
for (int j = i; j < list1.size(); j++) {
if (list1.get(j) >= list1.size() - i - 1) {
if (i == j) {
break;
}
result = result + (j - i);
list1.add(i, list1.get(j));
list1.remove(j + 1);
break;
}
// 找不到则返回-1
if (j == list1.size() - 1) {
return -1;
}
}
}
return result;
}
}