问题描述
小明这些天一直在思考这样一个奇怪而有趣的问题:
在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是:
如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。
当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。
输入格式
第一行是一个正整数N (1 <= N <= 50000), 表示全排列的规模。
第二行是N个不同的数字Pi(1 <= Pi <= N), 表示这N个数字的某一全排列。
输出格式
输出一个整数,表示不同连号区间的数目。
样例输入1
4
3 2 4 1
样例输出1
7
样例输入2
5
3 4 2 5 1
样例输出2
9
Note:
第一个用例中,有7个连号区间分别是:[1,1], [1,2], [1,3], [1,4], [2,2], [3,3], [4,4]
第二个用例中,有9个连号区间分别是:[1,1], [1,2], [1,3], [1,4], [1,5], [2,2], [3,3], [4,4], [5,5]
第一个用例中,[1,3]是指3 2 4按递增的顺序排列,变为2 3 4,是连续的。没有[2,4]因为[2,4]区间的数是2 4 1,按递增顺序排列变为1 2 4,中间缺3,不连续。
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
int ans = 0;
for (int i = 0; i<n; i++){
a[i] = sc.nextInt();
}
for (int i = 0; i<n; i++){
int max = a[i];
int min = a[i];
for (int j = i; j<n; j++){
max = Math.max(max,a[j]);
min = Math.min(min,a[j]);
if(max-min == j-i)ans++;
}
}
System.out.println(ans);
}
}