TensorFlow+PyCharm——Tensorflow虚拟环境下的Python环境

本文详细介绍了如何在PyCharm中配置Tensorflow环境,包括选择Anaconda中的Python解释器,通过编写代码测试配置是否成功,以及在特定环境中安装额外的Python包。步骤清晰,适合初学者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tensorflow环境搭建系列文章目录

第一章 Tensorflow深度学习环境搭建



前言

提示 前提:已经完成Anaconda,tensorflow和Pycharm的安装。
如未完成,参考这篇


提示:以下是本篇文章正文内容

一、打开PyCharm

点击Configure,进入设置
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
选择python.exe路径。是Anaconda安装时本身自带的python.exe。一般在直接在Anaconda文件夹中,我的在C:\develop\anaconda3\envs\tf_gpu中。一般都是在envs目录下的tensorflow环境。这是Anaconda安装目录中的Python解释器,不是Anaconda创建的虚拟环境中的Python解释器tensorflow环境搭建完成
在这里插入图片描述
在这里插入图片描述
tf_gpu是在anaconda中创建的tensorflow环境。这样就可以在PyCharm中使用了

二、测试Tensorflow是否配置成功

新建一个PythonProject文件夹,用PyCharm打开文件夹
在main.py中输入下面代码,运行,输出b’hello!‘,则配置成功

import tensorflow as tf
hello = tf.constant('hello,tf')
sess = tf.compat.v1.Session()
print(sess.run(hello))

在这里插入图片描述

三、如果想在特定环境安装包

在特定虚拟环境中安装包
1、选择下方Terminal

2、利用cd 进入项目的Scripts文件夹

3、输入 activate

4、利用 pip 命令安装即可

在这里插入图片描述

参考博客:
https://blog.csdn.net/YWP_2016/article/details/115477377?spm=1001.2101.3001.6650.4&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-4.pc_relevant_antiscanv2&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-4.pc_relevant_antiscanv2

https://blog.csdn.net/weixin_52058417/article/details/121964232

https://zhuanlan.zhihu.com/p/77494679

### 如何在 PyCharm 中设置和使用 TensorFlow 要在 PyCharm 中成功配置并使用 TensorFlow,可以按照以下方法操作: #### 配置虚拟环境 为了确保项目的独立性和依赖管理清晰,在 PyCharm 中创建一个新的项目时可以选择创建一个虚拟环境。通过 File -> Settings -> Project: [Your_Project_Name] -> Python Interpreter 菜单选项来完成此过程[^1]。 如果已经安装了 Anaconda 并希望通过它来管理和提供 TensorFlow 的支持,则需要特别注意解释器的选择。有时即使在 Anaconda 环境下正确安装了 TensorFlow 库,但在 PyCharm 中可能无法识别该库的存在。这是因为选择了错误的解释器或者是重新创建了一个不包含所需库的新环境所致[^2]。 #### 正确选择解释器 当遇到上述情况时,建议采取以下措施解决问题: - 删除当前工程文件夹。 - 直接运行位于 Anaconda3 安装路径下的 `python.exe` 文件作为基础构建新的工作区。 - 返回到 PyCharm 设置页面 (File -> Settings -> Project: [Your_Project_Name] -> Project Interpreter),再次指定刚才启动的那个带有 `(base)` 或者自定义名称标记的 Python 解释器实例。此时应该能够看到之前缺失的 Tensorflow 及其关联组件列表项被正常展示出来。 #### 加载 TensorFlow 库 一旦完成了以上步骤之后,就可以顺利加载所需的机器学习框架——TensorFlow 进行开发活动了。对于那些希望利用 GPU 来加速计算性能的人群来说,还需要额外确认驱动程序版本兼容性以及 CUDA 工具链等相关软硬件设施是否满足官方文档所提出的最低要求[^3]。 以下是验证 TensorFlow 是否可以在您的环境中正常工作的简单测试脚本: ```python import tensorflow as tf print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) ``` 这段代码会打印出可用 GPU 设备的数量,帮助开发者快速判断系统是否具备执行深度神经网络训练任务的能力[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值