目标检测Yolov5算法——两猫咪打架视频识别

本文的所有资源都放在作者的Github上了,有需要可以自己下载~

1.环境

需要安装好Pytorch,OpenCV,CUDA,CUDNN,nvidia,Anaconda以及paddle

2.安装labelImg

在终端运行
pip install labelimg
安装成功后,输入
labelImg。注意此处I必须大写!!!不然会显示没有labelimg。
在这里插入图片描述

3.下载labelImg(使用自己的数据集)

运行labelImg后,会弹出如下窗口
在这里插入图片描述此时我们可以对自己的数据集图片进行标注。
在home下新建一个名为VOC2007的文件夹,其中再新建两个文件夹,整个文件夹框架如下

VOC2007
│   JPEGImages
│   Annotations

其中JPEGImages文件夹用于存放需要标注的图片数据集,可以是jpg,png等;Annotations用于存放在labelImg中标注好的数据集,根据不同的格式有不同的后缀,voc下标注得到xml类型的结果。

4.获取数据集

我采用了b站一个两只猫咪打架的视频,下载好后每隔10帧得到一幅图像。这里是使用Python代码完成的

# 导入所有必要的库
import cv2
import os
  
# 从指定的路径读取视频(这里大家改成自己的video的绝对路径)
cam = cv2.VideoCapture("home\\xilm\\video\\888800093-1-208.mp4")
  
try :
     # 创建名为data的文件夹
     if not os.path.exists( 'data' ):
         os.makedirs( 'data' )
  
# 如果未创建,则引发错误
except OSError:
     print ( 'Error: Creating directory of data' )
  
# frame
currentframe = 0
  
while ( True ):
      
     # reading from frame
     ret, frame = cam.read()
  
     if ret:
         # 增加计数器,以便显示创建了多少帧
         currentframe += 1

         if currentframe%10 == 0:
             # 如果视频仍然存在,继续创建图像
             name = './data/frame' + str (int(currentframe/10)) + '.jpg'
             print ( 'Creating...' + name)
  
             # 写入提取的图像
             cv2.imwrite(name, frame)
     else :
         break
  
# 一旦完成释放所有的空间和窗口
cam.release()
cv2.destroyAllWindows()

运行完毕代码之后,就可以获得624张图像
在这里插入图片描述

5.数据集标注

打开labelImg,点击左侧的OpenDir,选择VOC2007\JPEGImages路径,就会在界面上出现图片
在这里插入图片描述接下来再点击左侧的Change Save Dir,选择VOC2007\Annotations路径。
接下来,按下W键,就可以进行画框标注了。我标注了两类['pure black','black-white'],表示两只猫咪。
标注完毕后,按下Ctrl+s就可以保存,此时保存得到xml文件。按D进行下一张图片的标注;按A返回上一张图片。

6.制作train和val集

标注完数据集之后,进行训练集和测试集的制作。
在home下新建一个文件夹,名为data;在data下再新建一个文件夹,名为VOCdevkit,将前面的VOC2007整个文件夹复制到VOCdevkit下。最后的文件夹目录如下:

data
│   VOCdevkit
└───────VOC2007
│   │      Annotations
│   │      JPEGImages

在data文件夹下新建一个python文件,命名为data-classification.py,其内容如下:

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
import random
from shutil import copyfile

classes =  ['pure black','black-white']
# 分类的名称

TRAIN_RATIO = 80


def clear_hidden_files(path):
    dir_list = os.listdir(path)
    for i in dir_list:
        abspath = os.path.join(os.path.abspath(path), i)
        if os.path.isfile(abspath):
            if i.startswith("._"):
                os.remove(abspath)
        else:
            clear_hidden_files(abspath)


def convert(size, box):
    dw = 1. / size[0]
    dh = 1. / size[1]
    x = (box[0] + box[1]) / 2.0
    y = (box[2] + box[3]) / 2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)


def convert_annotation(image_id):
    #in_file = open('VOCdevkit/VOC2007/Annotations/%s.xml' % image_id)
    #out_file = open('VOCdevkit/VOC2007/YOLOLabels/%s.txt' % image_id, 'w')
    in_file = open('VOCdevkit/VOC2007/Annotations/%s.xml' % image_id,encoding='UTF-8')
    out_file = open('VOCdevkit/VOC2007/YOLOLabels/%s.txt' % image_id,'w',encoding='UTF-8')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
    in_file.close()
    out_file.close()


wd = os.getcwd()
wd = os.getcwd()
data_base_dir = os.path.join(wd, "VOCdevkit/")
if not os.path.isdir(data_base_dir):
    os.mkdir(data_base_dir)
work_sapce_dir = os.path.join(data_base_dir, "VOC2007/")
if not os.path.isdir(work_sapce_dir):
    os.mkdir(work_sapce_dir)
annotation_dir = os.path.join(work_sapce_dir, "Annotations/")
if not os.path.isdir(annotation_dir):
    os.mkdir(annotation_dir)
clear_hidden_files(annotation_dir)
image_dir = os.path.join(work_sapce_dir, "JPEGImages/")
if not os.path.isdir(image_dir):
    os.mkdir(image_dir)
clear_hidden_files(image_dir)
yolo_labels_dir = os.path.join(work_sapce_dir, "YOLOLabels/")
if not os.path.isdir(yolo_labels_dir):
    os.mkdir(yolo_labels_dir)
clear_hidden_files(yolo_labels_dir)
yolov5_images_dir = os.path.join(data_base_dir, "images/")
if not os.path.isdir(yolov5_images_dir):
    os.mkdir(yolov5_images_dir)
clear_hidden_files(yolov5_images_dir)
yolov5_labels_dir = os.path.join(data_base_dir, "labels/")
if not os.path.isdir(yolov5_labels_dir):
    os.mkdir(yolov5_labels_dir)
clear_hidden_files(yolov5_labels_dir)
yolov5_images_train_dir = os.path.join(yolov5_images_dir, "train/")
if not os.path.isdir(yolov5_images_train_dir):
    os.mkdir(yolov5_images_train_dir)
clear_hidden_files(yolov5_images_train_dir)
yolov5_images_test_dir = os.path.join(yolov5_images_dir, "val/")
if not os.path.isdir(yolov5_images_test_dir):
    os.mkdir(yolov5_images_test_dir)
clear_hidden_files(yolov5_images_test_dir)
yolov5_labels_train_dir = os.path.join(yolov5_labels_dir, "train/")
if not os.path.isdir(yolov5_labels_train_dir):
    os.mkdir(yolov5_labels_train_dir)
clear_hidden_files(yolov5_labels_train_dir)
yolov5_labels_test_dir = os.path.join(yolov5_labels_dir, "val/")
if not os.path.isdir(yolov5_labels_test_dir):
    os.mkdir(yolov5_labels_test_dir)
clear_hidden_files(yolov5_labels_test_dir)

train_file = open(os.path.join(wd, "yolov5_train.txt"), 'w')
test_file = open(os.path.join(wd, "yolov5_val.txt"), 'w')
train_file.close()
test_file.close()
train_file = open(os.path.join(wd, "yolov5_train.txt"), 'a')
test_file = open(os.path.join(wd, "yolov5_val.txt"), 'a')
list_imgs = os.listdir(image_dir)  # list image files
prob = random.randint(1, 100)
print("Probability: %d" % prob)
for i in range(0, len(list_imgs)):
    path = os.path.join(image_dir, list_imgs[i])
    if os.path.isfile(path):
        image_path = image_dir + list_imgs[i]
        voc_path = list_imgs[i]
        (nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path))
        (voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path))
        annotation_name = nameWithoutExtention + '.xml'
        annotation_path = os.path.join(annotation_dir, annotation_name)
        label_name = nameWithoutExtention + '.txt'
        label_path = os.path.join(yolo_labels_dir, label_name)
    prob = random.randint(1, 100)
    print("Probability: %d" % prob)
    if (prob < TRAIN_RATIO):  # train dataset
        if os.path.exists(annotation_path):
            train_file.write(image_path + '\n')
            convert_annotation(nameWithoutExtention)  # convert label
            copyfile(image_path, yolov5_images_train_dir + voc_path)
            copyfile(label_path, yolov5_labels_train_dir + label_name)
    else:  # test dataset
        if os.path.exists(annotation_path):
            test_file.write(image_path + '\n')
            convert_annotation(nameWithoutExtention)  # convert label
            copyfile(image_path, yolov5_images_test_dir + voc_path)
            copyfile(label_path, yolov5_labels_test_dir + label_name)
train_file.close()
test_file.close()

这里只需要按需求更改两个位置:

  • 第九行:classes = ['pure black','black-white'],改为标注的类型;
  • 第十二行:TRAIN_RATIO = 80,改为训练集个数占总数据集的比例。

如果运行作者的数据集可以不修改此处。
现在点击运行该Python文件,就会得到许多新生成的文件
在这里插入图片描述首先,新生成了两个文件夹:imagesval,里面分别有两个文件夹traintest。不同在于:images里放的是train和val的图片,而labels里放的是yolo可以识别的train和val的txt标注文件。
其次,VOC2007文件夹里也生成了一个文件夹YOLOLabels
最后,data文件夹下生成了两个txt文件,分别是yolov5_train/val.txt。

7.训练yolov5目标检测模型
  • 首先下载yolov5模型,解压后生成一个yolov5-5.0文件夹。
    上图中红框标注的三个文件是后来添加的。

  • 接下来,将刚才data文件夹下的VOCdevkit文件复制到yolov5-5.0文件夹中,如上图所示。

  • 在VScode中打开yolov5-5.0文件夹,如下
    在这里插入图片描述
    上图中红框标注的两个文件是后来添加的。

  • 在上图的data文件夹下新建一个文件名为three.yaml的文件
    在这里插入图片描述
    其内容如下:

train: VOCdevkit/images/train
val: VOCdevkit/images/val

nc: 2

names: ['pure black','black-white']

这里大家可以根据需要,将nc改为自己的datasets类别个数,names改为标签。

  • models文件夹下新建一个文件名为three.yaml的文件
    在这里插入图片描述其内容如下:
# parameters
nc: 2  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

# anchors
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 3, C3, [1024, False]],  # 9
  ]

# YOLOv5 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

这里可以根据自己的需要更改第二行nc: 2 ,改为自己的datasets的类别个数。

  • 配置yolov5环境
    点击yolov5-5.0文件夹下的requirements.txt文件,可以看到第一行为pip install -r requirements.txt,在VSCode的终端下运行这行命令。

  • 权重文件
    yolov5s.pt文件放在weight文件夹下,这个文件我放在了github里。
    在这里插入图片描述上图的best.pt文件是后面生成的,这里不用管。

  • 训练模型
    打开yolov5-5.0文件夹下的train.py文件
    在这里插入图片描述对该文件的458-460行进行调整,内容改为下图。
    在这里插入图片描述这里主要修改了default的内容,也就是这些文件的相对路径在哪里。
    462行的default表示了训练次数,我这里选择训练50次。

  • 接下来就可以点击运行了。

注意:当提示RuntimeError: cuDNN error: CUDNN_STATUS_NOT_INITIALIZED时,可以通过修改463行的

parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')

default改小一点,我这里改了8,之后就可以正常运行了。
运行如下:
在这里插入图片描述

8.测试训练结果(以一个video为例)
  • 训练结束之后,会在yolov5-5.0文件夹下生成run文件夹
    在这里插入图片描述选择最大的exp下的weights文件夹,将best.pt文件复制到yolov5-5.0文件夹下的weights文件夹。
    在这里插入图片描述

  • 接下来,将要检测的video放在yolov5-5.0文件夹下。
    在这里插入图片描述

这个视频就是我们取数据集的视频。一开始我们每隔10帧取一张图片,也就意味着这个视频里还有9倍数据集大小的数据供我们验证。这个视频我也放在github了。

  • 接下来,选择yolov5-5.0文件夹下的detect.py文件
    在这里插入图片描述
    对151行和152行进行修改,如图所示。

  • 运行detect.py文件,就会发现,在runs\detect文件夹下生成了检测视频。
    在这里插入图片描述

9.最终结果

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

参考资料:

1.讲的很赞的b站视频
2.RuntimeError: cuDNN error: CUDNN_STATUS_NOT_INITIALIZED
3.使用的b站一个两猫猫吵架视频

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值