[OpenCV] EP4 噪声消除与滤波

🌌 噪声类型:高斯噪声 VS 椒盐噪声

一、核心概念⚡

是什么?

1. 噪声 📡

定义:图像中的干扰因素,由采集设备、传输信道等引起,表现为随机异常像素值。

高斯噪声

  • 特点:像素值呈正态分布(高斯分布),使图像模糊、有颗粒感,类似 “蒙上雾气”。
  • 成因:多由传感器噪声、光照不均等引起,如低光照下的拍摄噪声。

椒盐噪声: 

  • 特点:随机出现黑白像素点(0 或 255),像 “撒了盐和胡椒”,破坏图像干净度。
  • 成因:信号传输错误、传感器故障等,如老照片上的斑点。

2. 滤波器 🧩

定义:通过滑动 “卷积核”(小区域矩阵)计算中心像素值的图像处理工具。

  • 分类
    • 线性滤波:对邻域像素进行加权求和(线性运算),核值固定。
      • ✅ 数学公式计算(如加权求和),适合均匀噪声
    • 非线性滤波:基于像素值逻辑关系(如排序、阈值)计算,核值动态变化。
      • ✅ 逻辑规则处理(如取中位数),适合极端值或边缘保护
3. 滤波与模糊的关系 🤝
  • 联系:本质都是卷积运算,通过核滑动处理像素。
  • 区别
    • 低频:变化缓慢的部分(大面积区域)
    • 高频:快速变化的部分(边缘)
    • 低通滤波器 = 模糊 = 去除高频噪声(如高斯/均值滤波)(去噪、平滑)
    • 高通滤波器 = 锐化 = 强化高频边缘(如拉普拉斯算子)(增强边缘)
噪声类型表现形式对应滤波器原理
高斯噪声整体模糊均值/高斯滤波(线性)加权平均,削弱随机扰动
椒盐噪声孤立斑点中值滤波(非线性)取中位数,剔除极端值

🌌 线性滤波(均值/方框/高斯滤波)

一、核心概念⚡

均值滤波
  • 用核内像素平均值替代中心像素,消除随机噪声
  • ✅ 把周围像素颜色混在一起,模糊图像

方框滤波
  • 均值滤波的推广,可选择是否归一化(归一化=均值滤波)
  • ✅ 可以是求平均值,也可以是求和

高斯滤波
  • 核内像素加权平均,权重按高斯分布,中心权重最高
  • ✅ 更聪明的模糊,中间像素影响更大

 

二、用法 💐

1. 均值滤波 ☘️

dst = cv2.blur(src, ksize, dst=None, anchor=None, borderType=None)

参数
  • src:输入图像
  • ksize:卷积核的大小,必须为奇数,如 (3, 3)
  • dst:输出图像,可选。
  • anchor:卷积核的锚点,可选,默认是(-1, -1),表示核的中心。
  • borderType:边界填充类型,默认边界反射101
    • 只有中值滤波默认使用边界复制

 

2. 方框滤波☘️

dst = cv2.boxFilter(src, ddepth, ksize, dst=None, anchor=None, normalize=None, borderType=None)

(1)参数
  • ddepth:输出图像的深度,通常设为-1表示和输入图像深度相同。
    • 图像深度是指在数字图像处理和计算机视觉领域中,每个像素点所使用的位数(bit depth),图像深度决定了图像能够表达的颜色数量或灰度级
  • normalize:是否进行归一化,布尔值
(2)注意点:
  1. normalize=True时,和均值滤波相同;当normalize=False时,表示求和,输出可能会超出像素值范围

3. 高斯滤波 ☘️

dst = cv2.GaussianBlur(src, ksize, sigmaX, dst=None, sigmaY=None, borderType=None)

(1)参数
  • sigmaX:高斯核标准差,值越大越模糊 (sigmaY默认和sigmaX相同)
(2)注意点:
  1. 高斯滤波更适合保留边缘,且高斯噪声处理首选高斯滤波

🌌 非线性滤波(中值/双边滤波)

一、核心概念⚡

中值滤波
  • 取核内像素中值替代中心像素,有效去除椒盐噪声(去极端值)
双边滤波
  • 同时考虑空间距离和像素值差异,保留边缘的同时去噪
  • 两个高斯滤波结合

二、用法 💐

1. 中值滤波 ☘️

dst = cv2.medianBlur(src, ksize)

2. 双边滤波 ☘️

dst = cv2.bilateralFilter(src, d, sigmaColor, sigmaSpace, dst=None, borderType=None)

(1)参数
  • d:邻域直径(越大越慢)
  • sigmaColor:颜色空间滤波器的标准差,控制颜色相似性。(值大则更多颜色混合)
  • sigmaSpace:坐标空间滤波器的标准差,控制空间距离相似性。
(2)注意点:
  1. d=0时自动由sigmaSpace计算,通常设d=9平衡速度与效果

🪺 小结

  1. 滤波器的选择
    • 在不知道用什么滤波器好的时候:优先高斯滤波,然后均值滤波。
    • 斑点和椒盐噪声 → 优先使用中值滤波。
    • 要去除噪点的同时尽可能保留更多的边缘信息 → 双边滤波。
    • 线性滤波方式:均值滤波、方框滤波、高斯滤波(速度相对快)。
    • 非线性滤波方式:中值滤波、双边滤波(速度相对慢)。
  2. 边界填充:
    • 中值滤波默认使用边界复制填充 BORDER_REPLICATE
    • 其余滤波默认使用边界反射101填充 BORDER_REFLECT_101
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值