逐像元计算Hurst指数和趋势率Slope的Matlab代码实现

本文使用Hurst指数和Slope趋势率指数分析2001-2021年中国东部林地LAI数据,评估了LAI变化的持续性和趋势。通过计算Hurst指数判断序列的长期记忆性,结合Slope确定上升或下降趋势,从而预测未来变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、实验背景

1、Hurst指数:基于重标极差(R/S)分析方法基础上的赫斯特指数(H)的研究是由英国水文专家Hurst在研究尼罗河水库水流量和贮存能力的关系时,发现用有偏的随机游走(分形布朗运动)能够更好地描述水库的长期存贮能力,并在此基础上提出了用重标极差(R/S)分析方法来建立赫斯特指数(H)。作为判断时间序列数据遵从随机游走还是有偏的随机游走过程的指标(参考文章:【Matlab】逐像元Hurst指数分析)。

为了分析ΔLAI变化的持续性,引入Hurst指数进行分析,采用重标极差法(R/S)来计算Hurst指数,其计算方法如下:

(1)如果H=0.5,无一致性随机序列(无法判断未来的趋势);

(2)如果0.5<H<1,表明时间序列存在长期记忆性(未来趋势与现在趋势一致);

(3)如果0≤H<0.5,未来不一致的时间序列(未来趋势与现在趋势不一致)。

2、Slope趋势率指数:用来表征一个时间序列在指定时间范围内的变化趋势,Slope>0,上升趋

以下是MATLAB中求Hurst指数的示例代码: ```matlab function [H,rsq] = hurst(x) % Implements the Hurst exponent calculation % % INPUTS: % x: matrix of time series data (must be of size 2^N x M) % % OUTPUTS: % H: Hurst exponent, indicating the nature of the time series (0 < H < 1) % rsq: coefficient of determination of the linear regression fit % % EXAMPLE USAGE: % H = hurst(x) % % Originally written by Dr. John Morgan - University of Warwick % Modified by Max Little - University of Cambridge to return rsq % Updated by Sarthak Mittal - IIT Delhi to comply with MATLAB best practices % For details on the Hurst exponent see: % Hurst, Harold E. (1951), "Long-term storage: An experimental study", % The Journal of Chemical Physics 18 (6): 636-651 % Check if the input has a size of 2^N x M if ~isvector(x) && (log2(size(x,1))/log2(2)) == fix(log2(size(x,1))/log2(2)) % Calculate the range of window sizes to fit range = 2:fix(log2(size(x,1)))-2; % Initialize the arrays that hold the Log(R/S) and Log(2^k) values logratio = zeros(length(range),1); log2n = zeros(length(range),1); % Loop through all the window sizes for i = range % Calculate the number of windows and window size n = 2^i; m = floor(length(x)/n); % Initialize the arrays that hold the ranges and standard deviations ranges = zeros(m,1); stds = zeros(m,1); % Loop through all the windows for j = 1:m % Extract the values in the current window indices = (1:n) + (j-1)*n; window = x(indices); % Calculate the average and subtract it from the values avg = mean(window); window = window - avg; % Calculate the cumulative sum of the values cumsums = cumsum(window); % Find the range and standard deviation of the cumulative sums ranges(j) = max(cumsums) - min(cumsums); stds(j) = std(window); end % Calculate the linear regression fit of Log(R/S) vs Log(2^k) logratio(i) = log(mean(ranges ./ stds)); log2n(i) = log(n); end % Perform a linear regression fit between the Log(R/S) and Log(2^k) values p = polyfit(log2n,logratio,1); % Extract the slope of the linear regression fit H = p(1); % Calculate the coefficient of determination (r-squared value) rsq = 1 - sum((logratio - (p(1)*log2n + p(2))).^2) / ((length(logratio)-1)*var(logratio)); else % Error message for incorrect input size error('Error in hurst.m: Input must have a size of 2^N x M.') end end ``` 要使用该函数,请按照以下步骤进行操作: 1.创建一个包含时间序列数据的向量或矩阵。 2.调用"hurst"函数,并将时间序列数据作为输入变量。例如: ```matlab H = hurst(x) ``` 其中,"x"是包含时间序列数据的向量或矩阵,并且"H"是函数返回的Hurst指数
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值