- 博客(9)
- 收藏
- 关注
原创 利用一个shp数据中多个面要素同时裁剪栅格的ArcGIS和Python方法实现过程
地理学研究过程中,用一个矢量面去提取栅格的方法较为常见,但空间分析中需要将一个栅格数据上的多个空间位置分别进行提取时,逐个提取的方法不够快捷,例如,分别提取中国所有省份的DEM数据时,逐个提取很浪费时间。因此,本实验的目的是利用ArcGIS或Python方法批量提取一个矢量图层下的多个面要素的栅格数据。其内部的逻辑是:先按每个面要素(每个省份)的唯一代码把一个shp数据分割成多个shp,再逐个进行按掩膜提取。(2)转化完成后需要调整表内的内容,或者根据表内的内容修改代码中的“DZM”第三步:设置环境参数。
2023-11-23 17:04:28 3180
原创 逐像元计算Hurst指数和趋势率Slope的Matlab代码实现
将Slope和Hurst指数叠加得出LAI在未来的变化趋势的MATLAB代码
2023-10-25 17:02:00 3355 13
原创 发表SCI论文时的图形摘要问题及要求,干货!
例如,坐标轴的数量不能丢失,一半的单位不能显示,图片边缘的实际内容不能被截断,非英文字符不能影响阅读等。在论文确定被接受后,个别期刊会要求在文章中提供图形摘要,我们需要知道什么是图形摘要,其中有什么具体要求,以下是期刊的通知邮件中强调的关于。2. 如果GA中的图有部分需要版权许可,则应已获得版权许可,例如GA与图片中引用的部分相同;3. GA应清晰、高质量,能清晰地区分图片中最小尺寸的文字、数字或符号;10、GA中的文字、术语、缩写和符号的格式应符合文章的要求;5. GA应清晰总结文章的要点和发现;
2023-08-28 15:27:39 2047 1
原创 R语言实现驱动因素分析的机器学习方法:随机森林
随机森林(Random Forest, RF)方法既是一种有监督的机器学习算法,也是一种集合算法,它构建并结合了多个决策树来创建一个 "森林”,以获得比单个树更准确和稳定的结果(Breiman,2001)。这个包包含许多可选的函数和参数,是基于Breiman(Breiman,2001)设计的,以实现RF算法。1、研究目的:量化多种影响因素对于某一种因变量的重要性(贡献)时,除了回归分析,主成分分析等常用的统计学方法外,机器学习算法的应用也同样能够量化影响因素的影响程度。
2023-07-06 19:24:14 1345 1
植被总初级生产力(GPP)的研究思维导图
2023-10-18
MCD12Q2-User-Guide-V61.pdf
2023-07-13
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人