描述
约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根柱子,最左边的柱子自上而下、由小到大顺序串着由64个碟子构成的塔。目的是将最左边杆上的碟子全部移到最右边的杆上,条件是一次只能移动一个碟子,且不允许大碟子放在小碟子的上面,任何大小的碟子都可以直接放在柱子上面,中间的柱子可以作为中转站。可以计算得出64个碟子最少的移动次数是:18,446,744,073,709,551,615
假定碟子从小到大编号为1, 2, …,n。三根柱子的编号是A、B、C,最开始所有的碟子都放在A柱上,要把所有的碟子按照上面的规则移动到C柱上。请你编程来求出次数最少的移动碟子的方案。
假定n=3,那么最少移动碟子的方案为:
move 1: A==>C
move 2: A==>B
move 1: C==>B
move 3: A==>C
move 1: B==>A
move 2: B==>C
move 1: A==>C
一共需要7步。
现在给定n(1≤n≤ 10)个碟子,请求出第m(1≤m≤2^n-1 )步是移动第几号碟子,从哪根柱子移动到哪根柱子。
格式
输入格式
输入为一个整数n(小于20)和一个整数m,分别表示碟子的数目n和第m步,中间以空格分隔
输出格式
首先是一个正整数,表示第m步时移动的是哪一号碟子;然后是两个大写字母,分别表示碟子移动前所在柱子的编号和移动后的柱子编号,中间以空格分隔。
样例
输入样例
3 5
输出样例
1 B A
首先将A塔上的n-1个碟子借助C塔移动到B塔上;
此时A塔上只有一个碟子,将其直接移动到C塔上;
再将B塔上的n-1个碟子借助A塔移动到C塔上。
由此得到Hanoil的递归算法。
即A->C->B
A->C
B->A->C
代码
#include<iostream>
#include<string.h>
using namespace std;
int sum=0,m;
void hanoil(int n,char a,char b,char c)
{
if(n==1)
{
sum++;
if(sum==m)
{
cout<<n<<' '<<a<<' '<<c<<endl;
return;
}
//printf("将第%d个碟子从%c移到%c",n,a,c);
}
else
{
hanoil(n-1,a,c,b);
sum++;
if(sum==m)
{
cout<<n<<' '<<a<<' '<<c<<endl;
return;
}
//printf("将第%d个碟子从%c移到%c",n,a,c);
hanoil(n-1,b,a,c);
}
}
int main()
{
int n;
cin>>n>>m;
hanoil(n,'A','B','C');
return 0;
}
根本代码
#include<iostream>
#include<string.h>
using namespace std;
void hanoil(int n,char a,char b,char c)
{
if(n==1)
{
printf("将第%d个碟子从%c移到%c",n,a,c);
}
else
{
hanoil(n-1,a,c,b);
printf("将第%d个碟子从%c移到%c",n,a,c);
hanoil(n-1,b,a,c);
}
}
int main()
{
int n;
cin>>n;
hanoil(n,'A','B','C');
return 0;
}