自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(102)
  • 收藏
  • 关注

原创 《Attention Is All You Need》论文复现总结

Transformer 架构基于注意力机制,不使用循环神经网络(RNN)或卷积神经网络(CNN)。包括编码器(Encoder)和解码器(Decoder)两个部分。自注意力机制核心公式:[ \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V ]查询(Query)、键(Key)、值(Value)的计算。多头注意力机制多头注意力通过并行计算多个注意力头来提升模型的表示能力。位置编码。

2024-07-23 17:08:39 75

原创 AI行业应用前沿网站汇总

AI应用综合资讯网站: AI Trends (https://www.aitrends.com/) Towards Data Science (https://towardsdatascience.com/) Analytics Vidhya (https://www.analyticsvidhya.com/) 医疗健康领域: NVIDIA Healthcare (Solutions for Healthcare and Life Science Industries | NVIDIA)

2024-07-03 21:56:42 417 1

原创 google版本netbook超级强大,可以体验一下

2024-07-03 21:35:35 75

原创 如何感知万物,有哪些方法

感知万物是一个复杂而深奥的话题,涉及多个领域的知识。

2024-07-03 21:13:39 180

原创 兴趣爱好帖[植物研究]通过了解植物世界,为AI与植物交互提供更多得思路

世界上的植物种类非常丰富,据估计有超过39万种已知植物物种。这是一本全面的植物学教科书,涵盖了从细胞结构到生态系统的各个方面。《植物的智慧》 - 斯特凡诺·曼库索、亚历山德拉·维奥拉。探讨了植物的感知和行为能力,颠覆了我们对植物的传统认知。这是一本详细的植物识别指南,包含了大量精美的植物插图。这本书以生动的方式介绍了植物的生长、繁殖和生存策略。全面介绍了植物的进化、多样性和生态作用。《植物的私生活》 - 大卫·阿滕伯勒。《植物王国》 - 威尔·卡洛维茨。《植物图鉴》 - 大卫·伯尼。

2024-07-03 21:08:29 100

原创 兴趣爱好贴[动物研究]可以帮助建立模型思维,从而更多得设计出不同得模型结构

世界上的动物种类繁多,据估计有超过200万种已知动物物种。虽然不是严格意义上的动物学著作,但这本书揭示了人类活动对野生动物的影响,对环境保护和动物保护产生了重大影响。这只是动物界的一小部分门类,实际上还有许多其他门类的动物。这是一本全面介绍动物界多样性的教科书,涵盖了从原生动物到脊椎动物的各个门类。这本书将进化理论应用于动物社会行为的研究,开创了社会生物学领域。这是动物行为学领域的经典著作,探讨了动物行为的本能和学习机制。《社会生物学:新的综合》 - 爱德华·威尔逊。《沉默的春天》 - 蕾切尔·卡森。

2024-07-03 21:04:06 190

原创 不同框架训练出来的模型如何互相转化,同时查看模型内部内容

ONNX是一个开放的生态系统,允许AI开发者选择合适的工具,不会被特定的框架或库所限制。

2024-07-03 20:49:05 248

原创 如何可视化查看模型.bin文件(超快超简单)

【代码】如何可视化查看模型.bin文件(超快超简单)

2024-07-03 20:37:04 280

原创 随机森林(Random Forest)的好处、坏处及使用场景

【代码】随机森林(Random Forest)的好处、坏处及使用场景。

2024-07-02 22:18:59 357

原创 gbk/utf-8 编码错误解决方法

代码中指定encoding方式即可。

2024-07-02 22:14:21 362

原创 python工程中常见配置文件作用解释

gitignore:指定Git忽略的文件或目录。config.py:项目配置文件。db.sql:数据库初始化脚本。:用户初始化脚本。LICENSE:许可证文件。README.md:项目说明文件。:项目依赖文件。start.py:项目主入口文件。:外部库目录。:临时文件和控制台目录。Extensions:扩展目录。:数据库工具和SQL脚本目录。data:存放数据库数据的目录。schema:存放数据库模式定义的目录。:存放数据库模式布局定义的目录。

2024-07-02 19:52:56 414

原创 前端常用工程目录结构以及作用

src:前端项目的源代码目录。api:与后端 API 交互的代码。assets:静态资源文件。components:独立的功能模块组件。directive:自定义指令。layout:布局组件。plugins:插件配置和初始化。router:路由配置。store:Vuex 状态管理。utils:工具函数。views:视图组件。App.vue:应用的根组件。main.js:应用的入口文件。:权限管理代码。:全局设置和配置。

2024-07-02 19:49:04 485

原创 前端目录结构解释

ui:前端代码和资源的根目录。bin:包含用于构建、打包和运行项目的批处理脚本。build.bat:构建项目的脚本。:打包项目的脚本。:运行 web 服务器的脚本。build:构建生成的文件目录。index.js:构建生成的 JavaScript 文件。public:包含公共资源文件的目录。html:包含静态 HTML 文件的子目录。ie.html:针对 IE 的特殊 HTML 文件。:网站图标文件。index.html:主 HTML 文件,应用的入口页面。robots.txt。

2024-07-02 19:44:53 229

原创 docker目录与配置文件解释

build.sh:自动化构建 Docker 镜像的脚本。:容器启动时执行的入口脚本。Dockerfile:定义 Docker 镜像构建步骤和环境配置。pip.conf:pip 包管理器的配置文件,设置包镜像源。run.sh:自动化启动 Docker 容器的脚本。:apt 包管理器的源列表配置文件。# 使用 Ubuntu 20.04 作为基础镜像# 设置非交互模式和时区,解决选择地理区域的问题# 添加自定义的 apt 源和 pip 配置文件# 添加自定义的入口脚本。

2024-07-02 19:20:17 93

原创 docker上怎么部署应用

在这个示例中,我们创建了一个简单的 Python Flask Web 应用,使用 Dockerfile 定义了构建镜像的步骤和环境配置。假设我们有一个简单的 Python Flask Web 应用,用于展示一个简单的 Hello World 页面。在项目根目录下创建 Dockerfile,定义 Docker 镜像的构建步骤和环境配置。如果希望将镜像分享或在其他地方使用,可以将镜像上传到 Docker Hub。,应该能看到 “Hello, Docker!替换为你在 Docker Hub 上的用户名。

2024-07-02 18:02:55 412

原创 服务器上怎么部署docker

Docker Compose 是 Docker 官方提供的用于定义和运行多容器 Docker 应用程序的工具。默认情况下,Docker 命令需要 root 用户权限。请根据最新的版本号更新下载链接。

2024-07-02 17:57:17 420

原创 python中调用方法加不加()判断方法

如果你在一个函数调用中将另一个函数作为参数传递,或者在定义一个高阶函数时,你只需要提供函数名,不需要加括号。这是因为这里你并不是立即调用该函数,而是将其作为一个对象(可调用对象)传递。:当你访问一个对象的属性或方法(没有立即调用)时,也不需要加括号。但请注意,如果这个属性实际上是一个方法,当你想要调用它时,就需要加括号。:Lambda表达式定义匿名函数时,虽然看起来像是在调用,但实际上是在定义,因此不加括号。

2024-07-02 12:17:00 181

原创 模型重构与模型选型

模型重构与训练是指对现有的机器学习或深度学习模型进行优化、调整或重新设计,以改善模型性能、减少计算资源消耗或适应新的数据特征。

2024-07-01 10:48:57 504

原创 根据论文复现大模型方法以及出错处理技巧

复现一篇论文中的大模型搭建涉及以下几个关键步骤:理解论文的模型架构、数据集处理、超参数设置以及实验环境的搭建。这里给出一个基本的实现方法示例,假设我们选择复现一个图像分类任务中的经典模型,例如ResNet。

2024-07-01 10:47:55 849

原创 测试人员是怎么测试大模型的

测试大模型通常涉及多个方面,包括功能测试、性能测试和稳定性测试等。

2024-07-01 10:46:13 214

原创 产品经理是怎么提大模型需求的

作为大模型产品经理,梳理和提出大模型需求是一个关键步骤,涉及多个方面的考虑,包括业务需求、技术可行性、用户体验、数据准备等。以下是一个系统的流程和一些具体的步骤来帮助大模型产品经理梳理和提出需求。

2024-07-01 10:44:52 315

原创 大模型构建知识图谱基本过程

构建大模型知识图谱是一个复杂的过程,需要结合多种技术和方法。通过上述步骤,可以系统地构建和实现一个知识图谱,从数据收集到知识表示和推理,再到知识更新和维护。数据收集:从多种来源获取数据。数据清洗与预处理:确保数据的一致性和准确性。知识提取:使用NLP技术提取实体、关系和属性。知识表示:使用RDF或图数据库表示知识。知识存储:将知识存储在图数据库或三元组存储系统中。知识推理:使用推理引擎进行知识推理。知识更新和维护:定期更新和维护知识图谱。

2024-07-01 10:43:38 348

原创 算法工程师如何设计算法,优化算法,研发新的算法的

明确目标:确定算法要解决的问题和达到的目标。需求分析:了解需求的具体细节,如输入输出格式、性能要求等。首先,需要识别和定义问题。这一步至关重要,因为算法是为了解决具体问题而设计的。识别问题:明确现有方法不能解决的问题或其局限性。定义目标:明确新算法的目标和预期效果。

2024-07-01 10:41:16 1326

原创 使用Shell脚本微调大型模型**

在准备数据时,通常需要将数据集组织成训练集和验证集,并确保数据路径和格式符合模型的输入要求。假设我们有一个数据集,要在ResNet50模型基础上微调以进行分类任务。),用于设置训练参数、启动训练过程和保存模型。在Shell脚本中调用Python脚本(例如。),用于定义模型、训练循环、评估和保存模型。创建一个Shell脚本(例如。

2024-06-30 21:07:58 390

原创 大模型边缘计算和云计算使用示例

通过云计算平台提供的服务化部署方法(如AWS Lambda、Google Cloud Functions等)将模型封装为API服务,供多个客户端访问和使用。:选择一个轻量级的图像分类模型,如MobileNet,以适应边缘设备的计算资源限制。:利用边缘设备本地计算资源,减少与云端的数据传输和响应延迟,提高实时性能。:将经过量化和剪枝优化的模型部署到边缘设备(如智能摄像头)上。:将训练好的模型部署到云服务上,供客户端或其他边缘设备使用。:在云计算平台上进行大规模数据的模型训练。

2024-06-30 20:59:05 256

原创 模型训练加速gpu和tpu使用

在部署大型模型时,使用硬件加速器可以显著提升模型的训练和推理性能。常见的硬件加速器包括图形处理单元(GPU)和专用的张量处理单元(TPU)。

2024-06-30 20:56:25 291

原创 使用Docker部署一个简单的模型服务

假设我们有一个简单的Python模型服务,用于对输入的文本进行情感分析,返回积极或消极的情感预测。中编写Flask应用程序,创建API服务并加载模型,处理输入数据并返回预测结果。现在,您的模型服务已经作为一个Docker容器运行,并可以通过访问。例如,可以通过发送POST请求来进行情感分析预测。中编写模型的加载和预测逻辑,例如使用简单的逻辑进行情感分析。,指定如何构建Docker镜像。中的指令构建一个名为。的Docker镜像。

2024-06-30 20:52:48 304

原创 人工智能学术界研究方向,工业界方向以及反向研究

对抗性攻击与防御:安全性和隐私保护:模型解释与鲁棒性分析:多模态和跨模态研究:人工智能学术界的一些主要的研究方向:机器学习和深度学习:自然语言处理(NLP):计算机视觉:强化学习:人机交互和智能系统:伦理与社会影响:人工智能在工业界的一些主要的研究方向和应用:智能制造和自动化:智能交通与运输:智能医疗与健康:智能物联网与城市管理:金融科技与智能决策:环境监测与资源管理:

2024-06-30 20:36:18 229

原创 机器视觉基本概念理解

图像增强是通过算法和技术手段改善图像的视觉质量,使其更适合人类观察或计算机分析。

2024-06-30 20:31:17 286

原创 对抗网络基础知识入门

对抗网络(Generative Adversarial Network, GAN)是一种深度学习模型,由生成器(Generator)和判别器(Discriminator)组成,它们相互对抗学习,用于生成逼真的数据样本。

2024-06-30 20:27:17 240

原创 强化学习基础认知

强化学习(Reinforcement Learning, RL)是一种机器学习方法,通过智能体与环境的交互学习来达成某个目标或最大化预期累积奖励。

2024-06-30 20:24:25 311

原创 什么是具身智能,基本认知

具身智能”(Embodied Intelligence)是指通过物理身体与环境进行交互学习和解决问题的能力。它强调智能体(例如机器人或虚拟智能体)通过感知、行动和学习来适应和操作真实世界的能力。

2024-06-30 20:22:11 235

原创 如何保证大模型安全不被盗用

安全大模型(Secure and Private AI)是指在机器学习和人工智能应用中,采取各种技术手段来保护数据隐私和模型安全的一系列方法和实践。

2024-06-30 20:18:53 374

原创 文生图 图生视频 文生视频 语音生成 虚拟人 人物克隆 语音克隆 基本认知

文本生成图像模型通过自然语言描述生成对应的图像。通常使用生成对抗网络(GANs)或变分自动编码器(VAEs)等深度生成模型。从静态图像生成视频,通常需要预测图像的运动信息或利用生成对抗网络(GANs)。生成与目标人物相似的语音,通常需要收集目标人物的语音数据进行训练。通过文本描述生成视频,结合文本生成图像和图像生成视频的技术。生成虚拟人物的图像或动画,通常用于虚拟助手或娱乐领域。将文本转换为语音,通常使用基于深度学习的端到端模型。创建特定人物的虚拟克隆,模拟其外貌、语音和行为。

2024-06-30 20:14:15 380

原创 什么是端到端?端到端学习

端到端学习是一种通过训练一个单一的模型来直接映射输入到输出的方法,避免了传统方法中的手工特征提取和中间步骤。这种方法通过自动化特征学习和减少复杂性,通常能够在各种任务中取得更高的性能。端到端学习已经在语音识别、图像分类、机器翻译等领域取得了显著的成果,并广泛应用于实际应用中。

2024-06-30 20:10:47 646

原创 语音识别基础认识

语音识别和语音生成技术通过深度学习模型实现高效、准确的语音处理。这些技术已经在语音助手、导航系统、实时翻译等领域得到了广泛应用,提升了人机交互的自然性和便捷性。

2024-06-30 20:06:56 369

原创 多模态融合训练/剪枝/微调/冻结/解冻基本理解入门

**早停止(Early Stopping)**:监控验证集的性能,当验证集性能不再提升时,提前停止训练,防止模型过拟合。- **局部剪枝(Layer-wise Pruning)**:在每一层内单独进行剪枝,将每层权重最小的部分剪掉。- **量化**:将模型的权重从浮点数表示转换为低精度表示(如8位整数),从而减少模型大小和计算需求。- **全局剪枝(Global Pruning)**:对整个网络的权重进行排序,然后剪掉最小的权重。1. **权重剪枝(Weight Pruning)**

2024-06-30 20:03:10 376

原创 预训练模型怎么套用?

【代码】预训练模型怎么套用?

2024-06-30 09:32:36 296

原创 张量计算后总是分不清楚形状怎么办?

广播是一种自动扩展较小张量形状以匹配较大张量形状的机制。在执行元素级操作时,广播机制会扩展较小的张量。通过实践练习和调试代码,你可以更好地理解张量形状的变化。尝试不同的形状变化操作,并使用。理解张量形状变化需要结合具体的代码。语句输出每一步的张量形状,观察变化。

2024-06-28 20:55:51 253

原创 词向量以及词向量迁移使用示例

词向量(Word Embeddings)是一种将词语表示为实数向量的技术。这种表示方式将文本数据转换为可以输入到机器学习模型中的数值形式。词向量通过捕捉词语之间的语义关系,使得相似词语在向量空间中距离更近。

2024-06-28 19:59:33 240

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除