读取数据集以及生成label标签txt文件

从train和test的txt文件中获取每个图片的路径以及其对应的标签

博主的训练和测试文件中的路径和标签的表示形式如下:
图片路径和标签之间有一个空格

导入相关库

import torch
from torch.utils.data.dataset import Dataset
from PIL import Image
import numpy as np
from torchvision import transforms

从文件中读取图片和相应的标签

依据生成图片和标签的格式获取相应的图片和标签,在这里因为图片路径和标签之间以空格区分,所以使用空格进行划分。

def read_txt(path):
    imgs, labels = [], []
    with open(path, 'a') as f:
        for line in f.readlines():      
            im, label = line.strip().split(' ')
            imgs.append(im)
            labels.append(int(label))
    return imgs, labels

对传入的数据集进行处理

处理训练和测试数据集

class MyCustomDataset(Dataset):
    def __init__(self, root_path, class_num=4, transform=None):
        self.txt_path = root_path
        self.img_path, self.img_label = read_txt(root_path)
        self.transform=transform
    def __getitem__(self, index):
        img_path = self.img_path[index]
        img = Image.open(img_path)
        if self.transform is not None:
            img = self.transform(img)
        label = np.array(self.img_label[index])
        label = torch.from_numpy(label).type(torch.long)
        return img, label
    def __len__(self):
        return len(self.img_path)

在主函数中将上述模块导入,并使用其处理测试和训练数据集

train_data = MyCustomDataset(args.img_tr, transform=train_transform)
test_data = MyCustomDataset(args.img_te, transform=test_transform)

依据训练和测试数据集所在的路径生成相应的训练和测试txt文件(标签和图片路径以空格划分)

导入相关库

import os
import sys
from pathlib import Path
import os

遍历文件夹获取图片路径并生成相应的标签

训练和测试文件夹中的类别目录如下:
训练数据集文件夹目录

def listfiles(rootDir , txtfile, label=0):
    ftxtfile = open(txtfile, 'w')
    list_dirs = os.walk(rootDir)
    count = 0
    dircount = 0
    label = -1
    # 遍历文件夹中图片,并读取路径信息
    for root, dirs, files in list_dirs:
        for f in files:
            ftxtfile.write(os.path.join(root, f) + ' ' + str(label)+ '\n')
            print(os.path.join(root, f) + ' ' + str(label) + '\n')
            count += 1
        label += 1

将数据集路径以及生成测试或训练txt文件的路径传入函数

if __name__ == '__main__':
    listfiles(r'autodl-tmp/mydata/dataset/AID/AID_test5', r'autodl-tmp/mydata/dataset/AID/AID_test5/test.txt')

使用时换成自己文件夹所在的位置即可。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值