🔥关注墨瑾轩,带你探索编程的奥秘!🚀
🔥超萌技术攻略,轻松晋级编程高手🚀
🔥技术宝库已备好,就等你来挖掘🚀
🔥订阅墨瑾轩,智趣学习不孤单🚀
🔥即刻启航,编程之旅更有趣🚀
一、Hadoop与Spark的‘双人舞’:Java是‘舞伴’还是‘裁判’?
1.1 Hadoop的‘传统舞步’:MapReduce的Java编程
“Hadoop是‘老派舞王’,Java是它的‘专属舞伴’!用MapReduce跳‘分治之舞’!”
代码实战(Hadoop WordCount):
// 1. 定义Mapper类:拆分单词并计数
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
// 拆分句子为单词
String[] words = value.toString().split("\\s+");
for (String w : words) {
word.set(w); // 设置当前单词
context.write(word, one); // 输出<单词, 1>
}
}
}
// 2. 定义Reducer类:合并计数
public static class IntSumReducer
extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get(); // 累加计数
}
result.set(sum);
context.write(key, result); // 输出<单词, 总计数>
}
}
// 3. 主函数:编排舞蹈
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class); // 中间合并优化
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
代码小课堂:
Mapper
:像‘拆信人’,把每行文本拆成单词!Reducer
:像‘会计’,把所有<单词,1>
合并成<单词,总次数>
!Combiner
:本地预合并,减少网络传输!像‘减负快递员’!
1.2 Spark的‘现代舞步’:Java的函数式编程风格
“Spark是‘闪电侠’,Java用Lambda表达式‘踩点’!用RDD/DataSet跳‘内存之舞’!”
代码实战(Spark WordCount):
SparkSession spark = SparkSession.builder()
.appName("JavaWordCount")
.master("local") // 本地模式
.getOrCreate();
JavaRDD<String> lines = spark.read().textFile("hdfs://input.txt").javaRDD();
JavaRDD<String> words = lines.flatMap(line -> Arrays.asList(line.split("\\s+")).iterator());
JavaPairRDD<String, Integer> counts = words.mapToPair(word -> new Tuple2<>(word, 1))
.reduceByKey((a, b) -> a + b); // 简洁的聚合操作!
counts.saveAsTextFile("hdfs://output"); // 保存结果
spark.stop();
代码小课堂:
flatMap
:把每行拆成单词流,像‘散装糖果机’!reduceByKey
:在内存中快速合并,比Hadoop快10倍!SparkSession
:像‘总控台’,统一管理数据源和计算!
二、Hadoop与Spark的‘合作秘籍’:Java的桥梁
2.1 桥梁1:HDFS作为Spark的‘数据仓库’
“让Spark直接从HDFS读取数据,像‘快递员直达’!不用‘中转站’!”
代码实战(Spark读HDFS):
SparkSession spark = SparkSession.builder().getOrCreate();
Dataset<String> df = spark.read().text("hdfs://namenode:9000/input.txt");
df.show(); // 直接展示HDFS数据!
2.2 桥梁2:YARN资源管理的‘调度指挥’
“用YARN给Hadoop和Spark‘分配舞池’,避免‘踩脚’!”
代码实战(Spark on YARN):
SparkSession spark = SparkSession.builder()
.master("yarn") // 指定YARN为资源管理器
.config("spark.yarn.queue", "default") // 指定队列
.getOrCreate();
三、Java的‘魔法道具’:序列化与数据格式
3.1 道具1:Writable接口的‘变身术’
“Hadoop要求数据类型必须实现
Writable
,像‘变身卡’!”
代码示例(自定义Writable):
public class MyData implements Writable {
private int id;
private String name;
public void write(DataOutput out) throws IOException {
out.writeInt(id);
out.writeUTF(name);
}
public void readFields(DataInput in) throws IOException {
id = in.readInt();
name = in.readUTF();
}
}
3.2 道具2:Spark的Kryo序列化加速
“用Kryo替换Java原生序列化,像‘换跑鞋’!速度提升50%!”
代码配置:
SparkConf conf = new SparkConf()
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.registerKryoClasses(Arrays.asList(MyData.class));
四、实战案例:‘数据湖’到‘数据仓库’的全流程
4.1 步骤1:Hadoop收集数据到HDFS
// 用Hadoop的CopyFromLocal命令上传文件
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf);
fs.copyFromLocalFile(new Path("local/data.csv"),
new Path("hdfs://data.csv"));
fs.close();
4.2 步骤2:Spark处理数据
SparkSession spark = SparkSession.builder().getOrCreate();
Dataset<Row> df = spark.read().csv("hdfs://data.csv");
df.createOrReplaceTempView("temp_table");
Dataset<Row> result = spark.sql("SELECT * FROM temp_table WHERE value > 100");
result.write().parquet("hdfs://processed_data");
4.3 步骤3:Hadoop导出到数据库
// 用Sqoop导出数据到MySQL
String[] args = {"export", "--connect", "jdbc:mysql://localhost:3306/mydb",
"--table", "output_table", "--export-dir", "hdfs://processed_data"};
Sqoop.runTool(args); // 通过Java调用Sqoop命令
五、致命伤:Java集成的‘五大陷阱’
5.1 陷阱1:‘裸奔的序列化’
“自定义类没实现
Serializable
?Spark作业直接‘跪’!”
解决方案:
public class MyData implements Serializable { // 添加Serializable接口
// 类体...
}
5.2 陷阱2:‘内存溢出’的Spark
“数据量太大,Spark把内存吃爆!像‘贪吃蛇’!”
解决方案:
SparkConf conf = new SparkConf()
.set("spark.executor.memory", "4g") // 分配更多内存
.set("spark.memory.fraction", "0.7"); // 调整内存比例
5.3 陷阱3:‘找不到类’的Hadoop作业
“Mapper/Reducer类没打包到JAR?Hadoop说‘没这人’!”
解决方案:
# 打包时包含所有依赖
mvn clean package -DskipTests
hadoop jar your-job.jar cn.juwatech.hadoop.WordCount
5.4 陷阱4:‘无效的YARN配置’
“Spark提交到YARN时少了
spark.yarn.jar
?作业‘卡在起跑线’!”
解决方案:
SparkSession.builder()
.config("spark.yarn.jar", "hdfs://spark-assembly.jar") // 指定Spark JAR路径
.master("yarn")
.getOrCreate();
5.5 陷阱5:‘乱码的HDFS文件’
“文本文件没指定编码?读取时全是‘乱码’!”
解决方案:
// 读取时指定编码
Dataset<String> df = spark.read().option("encoding", "UTF-8").text("hdfs://data.txt");
六、终极代码示例:‘全栈分布式应用’实战
// 1. Hadoop读取并清洗数据
public class DataCleaner {
public static void main(String[] args) {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "Data Cleaner");
job.setMapperClass(CleanMapper.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path("hdfs://raw_data"));
FileOutputFormat.setOutputPath(job, new Path("hdfs://cleaned_data"));
job.waitForCompletion(true);
}
}
// 2. Spark分析数据
public class DataAnalyzer {
public static void main(String[] args) {
SparkSession spark = SparkSession.builder().getOrCreate();
Dataset<String> cleanData = spark.read().text("hdfs://cleaned_data");
Dataset<Row> df = cleanData.toDF("value");
df.createOrReplaceTempView("data");
Dataset<Row> result = spark.sql("SELECT AVG(value) AS avg FROM data");
result.write().save("hdfs://analysis_result");
spark.stop();
}
}
// 3. Hadoop导出结果
public class DataExporter {
public static void main(String[] args) {
// 调用Sqoop导出到MySQL(代码略)
}
}
七、避坑指南:Java分布式编程的‘十诫’
- 诫命第一条: 自定义类必须实现
Serializable
或Writable
! - 诫命第二条: Spark作业前先检查YARN资源队列权限!
- 诫命第三条: Hadoop Mapper/Reducer类必须public!
- 诫命第四条: 避免在Driver节点处理大数据集,否则会‘爆内存’!
- 诫命第五条: 使用
spark-shell
或hadoop jar
测试代码后再提交! - 诫命第六条: HDFS路径必须以
hdfs://
开头! - 诫命第七条: Spark的
reduceByKey
前尽量加filter
减少数据量! - 诫命第八条: Hadoop作业日志用
-logs
参数查看详细错误! - 诫命第九条: 定期清理HDFS过期数据,避免‘舞池’变‘垃圾场’!
- 诫命第十条: 永远记住:‘没有测试,分布式计算就是‘盲人摸象’!’