L2,1范数的优化问题

L2,1范数的优化问题

问题描述

在这里插入图片描述
其中||*||2,1表示为对一个矩阵的每个列向量求2范数,然后对求得的值求1范数,即绝对值相加。

证明

这个优化问题对于列向量来说显然是可拆分的,所以讨论的时候针对某一列向量 W i W_i Wi
min ⁡ W i λ ∣ ∣ W i ∣ ∣ 2 + 1 2 ∣ ∣ W i − Q i ∣ ∣ F 2 \mathop{\min}\limits_{W_i} \lambda ||W_i||_2 +\frac{1}{2}||W_i-Q_i||_F^2 Wiminλ∣∣Wi2+21∣∣WiQiF2
设拉格朗日函数为: L = λ ∣ ∣ W i ∣ ∣ 2 + 1 2 ∣ ∣ W i − Q i ∣ ∣ F 2 L=\lambda ||W_i||_2 +\frac{1}{2}||W_i-Q_i||_F^2 L=λ∣∣Wi2+21∣∣WiQiF2
W i W_i Wi的导数为0可得:
λ W i ∣ ∣ W i ∣ ∣ 2 + W i − Q i = 0 \frac{\lambda W_i}{||W_i||_2}+W_i-Q_i=0 ∣∣Wi2λWi+WiQi=0
即:
λ + ∣ ∣ W i ∣ ∣ 2 ∣ ∣ W i ∣ ∣ 2 W i = Q i              ( 1 ) \frac{\lambda +||W_i||_2}{||W_i||_2}W_i=Q_i~~~~~~~~~~~~(1) ∣∣Wi2λ+∣∣Wi2Wi=Qi            (1)
在这个等式当中既存在 W i W_i Wi,也存在 ∣ ∣ W i ∣ ∣ 2 ||W_i||_2 ∣∣Wi2,这让求解出 W i W_i Wi变得非常困难。
技巧在于这一步,两边同时取2范数,目的就是先找到 ∣ ∣ W i ∣ ∣ 2 ||W_i||_2 ∣∣Wi2的等式关系,将其替换。
λ + ∣ ∣ W i ∣ ∣ 2 = ∣ ∣ Q i ∣ ∣ 2 \lambda +||W_i||_2=||Q_i||_2 λ+∣∣Wi2=∣∣Qi2
显然向量2范数一定为正值(考虑不是非0向量的情况),那么为了尽可能满足上述等式, ∣ ∣ W i ∣ ∣ 2 ||W_i||_2 ∣∣Wi2的取值要分情况讨论:
∣ ∣ W i ∣ ∣ 2 = { ∣ ∣ Q i ∣ ∣ 2 − λ              i f      λ < ∣ ∣ Q i ∣ ∣ 2 0                              o t h e r w i s e ||W_i||_2= \begin{cases} ||Q_i||_2-\lambda ~~~~~~~~~~~~if~~~~ \lambda<||Q_i||_2\\ 0~~~~~~~~~~~~~~~~~~~~~~~~~~~~otherwise\\ \end{cases} ∣∣Wi2={∣∣Qi2λ            if    λ<∣∣Qi20                            otherwise
最后将 ∣ ∣ W i ∣ ∣ 2 ||W_i||_2 ∣∣Wi2带入到(1)式子当中解出最后的结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值