多示例学习中的损失函数选择

本文讨论了在多示例学习中选择损失函数的重要性,介绍了二分类交叉熵、HingeLoss和DiceLoss等常见损失函数,以及如何根据问题特性和数据分布选择和定制损失函数,强调了处理袋级别标签与示例级别标签间关系的必要性。
摘要由CSDN通过智能技术生成

在多示例学习中,损失函数的选择是关键的,因为它直接影响着模型的训练和性能。以下是一些常用的损失函数:

  1. 二分类交叉熵损失(Binary Cross-Entropy Loss):

    • 适用于二分类问题,其中袋被标记为正类别或负类别。
    • 公式:[ \text{Loss} = -\frac{1}{N} \sum_{i=1}^{N} \left(y_i \log(p_i) + (1 - y_i) \log(1 - p_i)\right) ]
    • 其中 (N) 是袋的数量,(y_i) 是实际标签(0或1),(p_i) 是模型预测为正类别的概 
  2. Hinge Loss:

    • 通常用于支持向量机(SVM)等问题,也可以在多示例学习中使用。
    • 公式:[ \text{Loss} = \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y_i \cdot p_i) ]
    • 其中 (N) 是袋的数量,(y_i) 是实际标签(+1或-1),(p_i) 是模型的原始输出(未经过 sigmoid 或 softmax)
  3. Dice Loss:

    • 适用于图像分割等问题,可以在多示例学习中进行修改。
    • 公式:[ \text{Loss} = 1 - \frac{2 \cdot \sum_{i=1}^{N} (y_i \cdot p_i)}{\sum_{i=1}^{N} y_i^2 + \sum_{i=1}^{N} p_i^2} ]
    • 其中 (N) 是袋的数量,(y_i) 是实际标签,(p_i) 是模型预测。


其他定制损失:可以根据具体问题的特点设计定制的损失函数,考虑到多示例学习中示例级别标签的未知性。

在选择损失函数时,通常需要考虑问题的特性、数据分布以及模型的输出。在多示例学习中,特别要注意袋的标签是通过其内部示例的某种组合方式得到的,损失函数需要能够处理这种袋级别标签与示例级别标签之间的关系。

  • 10
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值