上一篇博客,我们学习了如何通过更快的item()和itemset()的方法访问图片,以及了解了图像的兴趣位置的获取方法,那么今天,我们将学习通道的处理方法,通过通道的拆分和合并的实例,让大家更好的了解咱们有关于BGR通道的知识。
文章大纲
通道获取
Split() 方法
在OpenCV中,可以使用split()方法将图像的不同通道拆分为单独的Mat对象。该方法接收一个原始图像的Mat对象并返回一个包含所有通道的向量,每个通道都保存为单独的Mat对象。以下是通道拆分的示例代码:
import cv2
# 读取图像
img = cv2.imread("LFS.jpg")
# 将图像的不同通道拆分为单独的Mat对象
B, G, R = cv2.split(img)
# 显示单个通道的图像
cv2.imshow("Blue Channel", B)
cv2.imshow("Green Channel", G)
cv2.imshow("Red Channel", R)
cv2.waitKey(0)
cv2.destroyAllWindows()

在上面的示例代码中,我们首先读取一张图像,然后使用split()方法将其拆分为Blue、Green和Red通道,并将每个通道分别保存为单独的Mat对象。接下来,我们显示每个通道的图像并等待用户按下任意按键以关闭窗口。
索引法
还有一个更加原始的方法就是像我们之前处理图片所用的索引法一样,来进行各个通道之间的分离。
import cv2
# 读取图像
img

最低0.47元/天 解锁文章

25万+

被折叠的 条评论
为什么被折叠?



