Quantization(二)变长公式推导

1.简要介绍

本文简要介绍基于变长码的标量量化。上篇研究了在给定的重构电平K的情况下,将失真降至的量化器的设计,同时有一个前提:假设所有重构level s i ′ s_i^{'} si都用相同长度的码字,为定长编码。
现在我们结合变长码γ来考虑量化器的设计。此时此刻,我们对每一个特定的映射 s i ′ s_i^{'} si赋给的码字长度为: l ‾ ( s i ′ ) = ∣ γ ( s i ′ ) ∣ \overline{l}(s_i^{'})=|\gamma(s_i^{'})| l(si)=γ(si)。对于编码器来说,我们可以随意采用,比如Huffman编码,此时平均码字长度为:
R = ∑ i = 0 N − 1 p ( s i ′ ) × l ‾ ( s i ′ ) R=\sum_{i=0}^{N-1}p(s_i^{'})\times \overline{l}(s_i^{'}) R=i=0N1p(si)×l(si)
偏差Distortion(D)同上一篇的定义。如果我们用Huffman这个变长编码, l ‾ ( s i ′ ) \overline{l}(s_i^{'}) l(si)是会随着 p ( s i ′ ) p(s_i^{'}) p(si)改变的,所以这个时候我们采用一种受码率约束的损失来衡量效果。形式如下:
m i n D   s u b j e c t   t o   R ≤ R m a x min D \ subject\ to \ R \le R_{max} minD subject to RRmax
or
m i n R   s u b j e c t   t o   D ≤ D m a x min R \ subject\ to \ D \le D_{max} minR subject to DDmax

R m a x R_{max} Rmax D m a x D_{max} Dmax分别是给定的最大速率和最大值失真。这种约束最小化问题可以是表述为拉格朗日泛函的无约束最小化:
J = D + λ R = E { d 1 ( S , Q ( S ) ) } + λ E { l ‾ ( Q ( S ) ) } J=D+\lambda R=E\{d_1(S,Q(S))\}+ \lambda E\{\overline{l}(Q(S))\} J=D+λR=E{d1(S,Q(S))}+λE{l(Q(S))}
如果有一个拉格朗日参数 λ λ λ满足一个特定的速率 R m a x R_{max} Rmax(或特定失真Dmax),对应的失真D(或速率R)是约束优化问题的一个解。

2.求解 s i ′ s_i^{'} si with constant u i u_i ui

为了推导出类似于量化器的必要条件,在定长编码的设计中,我们首先假设给定了各个 u i u_i ui是给定的。因为速率R与reconstruction level s i ′ s_i^{'} si,上述最小化即可等价于最小化D。(如果我们采用Huffman算法来编码的话, l ‾ ( s i ′ ) \overline{l}(s_i^{'}) l(si)通常只与对应区间的概率有关,而 p ( s i ′ p(s_i^{'} p(si通常情况下只与 u i u_i ui有关。)此时,对于 s i ′ s_i^{'} si的求解同上篇求解:
D = E [ f ( s i n − s o u t ) ] = ∑ i = 1 N ∫ − u i u i + 1 f ( s − s i ′ )   p ( x )   d x + ∑ i = 0 N − 1 p ( s i ′ ) l ‾ ( s i ′ ) \begin{aligned} D & = E[f(s_{in}-s_{out})] \\ & = \sum_{i=1}^{N} \int_{-u_i}^{u_{i+1}} f(s-s_i^{'})\ p(x)\ dx +\sum_{i=0}^{N-1}p(s_i^{'})\overline{l}(s_i^{'})\\ \end{aligned} D=E[f(sinsout)]=i=1Nuiui+1f(ssi) p(x) dx+i=0N1p(si)l(si)
x N + 1 = ∞ , x 1 = − ∞ x_{N+1}=\infty,x_1=-\infty xN+1=x1=

∂ D ∂ s i ′ = − ∫ u i u i + 1 f ′ ( s − s i ′ )   p ( x )   d x = 0 i = 1 , . . . , N         ( 2 ) \begin{aligned} \frac{\partial D}{\partial s_i^{'}} = -\int_{u_i}^{u_{i+1}} f^{'}(s-s_i^{'})\ p(x)\ dx=0 \\ i=1,...,N\ \ \ \ \ \ \ (2) \end{aligned} siD=uiui+1f(ssi) p(x) dx=0i=1,...,N       (2)
函数 f ( s ) f(s) f(s)我们采用MSE。
方法一:
E { ( S − s i ′ ) 2 } = E { ( S − E ( s ) + E ( s ) − s i ′ ) 2 } = E { ( S − E ( s ) ) ) 2 } + ( E ( s ) − s i ′ ) 2 ≥ E { ( S − E ( s ) ) ) 2 } \begin{aligned} & E \{ (S-s_i{'})^2 \} \\ & =E\{(S-E(s)+E(s)-s_i{'})^2\} \\ & =E\{(S-E(s)))^2\}+(E(s)-s_i{'})^2 \\ & \ge E\{(S-E(s)))^2\} \end{aligned} E{(Ssi)2}=E{(SE(s)+E(s)si)2}=E{(SE(s)))2}+(E(s)si)2E{(SE(s)))2}
当等号成立时, E { S } = = s i ′ E\{S\} == s_i^{'} E{S}==si,即:
s i ′ = E { S } = ∫ u i u i + 1 s f ( s )   d s ∫ u i u i + 1 f ( s )   d s s_i^{'}=E\{S\}=\frac{\int_{u_i}^{u_{i+1}}sf(s)\ ds}{\int_{u_i}^{u_{i+1}}f(s)\ ds} si=E{S}=uiui+1f(s) dsuiui+1sf(s) ds

方法二:
D = E { f ( S , s i ′ ) } = ∫ u i u i + 1 ( s − s i ′ ) 2 f ( s )   d s = ∫ u i u i + 1 s 2 f ( s )   d s ‾ − ∫ u i u i + 1 2 s s i ′ f ( s )   d s + ∫ u i u i + 1 s i ′ 2 f ( s )   d s ‾ \begin{aligned} D&= E\{f(S,s_i^{'})\}=\int_{u_i}^{u_{i+1}}(s-s_i^{'})^2f(s)\ ds \\ & = \underline{\int_{u_i}^{u_{i+1}}s^2f(s)\ ds}-\underline{\int_{u_i}^{u_{i+1}}2ss_i^{'}f(s)\ ds+\int_{u_i}^{u_{i+1}}s_i^{'2}f(s)\ ds } \end{aligned} D=E{f(S,si)}=uiui+1(ssi)2f(s) ds=uiui+1s2f(s) dsuiui+12ssif(s) ds+uiui+1si2f(s) ds
上述第一项为定值,所需对于D最小化来说,我们需要将第二项最小化,即:
M i n s i ′   ∫ u i u i + 1 s i ′ 2 f ( s )   d s − ∫ u i u i + 1 2 s i ′ s f ( s )   d s Min_{s_i^{'}}\ \int_{u_i}^{u_{i+1}}s_i^{'2}f(s)\ ds-\int_{u_i}^{u_{i+1}}2s_i^{'}sf(s)\ ds Minsi uiui+1si2f(s) dsuiui+12sisf(s) ds
为了方便,我们设:
x = ∫ u i u i + 1 f ( s )   d s , y = ∫ u i u i + 1 s f ( s )   d s x=\int_{u_i}^{u_{i+1}}f(s)\ ds, y=\int_{u_i}^{u_{i+1}}sf(s)\ ds x=uiui+1f(s) ds,y=uiui+1sf(s) ds

D = x s i ′ 2 − 2 y s i ′ D=xs_i^{'2}-2ys_i^{'} D=xsi22ysi

∂ D ∂ s i ′ = 2 x s i ′ − 2 y = 0 \frac{\partial D}{\partial s_i^{'}}=2xs_i^{'}-2y=0 siD=2xsi2y=0
故:
s i ′ = y x s i ′ = E { S } = ∫ u i u i + 1 s f ( s )   d s ∫ u i u i + 1 f ( s )   d s \begin{aligned} & s_i^{'}=\frac{y}{x} \\ &s_i^{'}=E\{S\}=\frac{\int_{u_i}^{u_{i+1}}sf(s)\ ds}{\int_{u_i}^{u_{i+1}}f(s)\ ds} \end{aligned} si=xysi=E{S}=uiui+1f(s) dsuiui+1sf(s) ds

3.求解 u i u_i ui with constant s i ′ , l ‾ ( s i ′ ) s_i^{'},\overline{l}(s_i^{'}) si,l(si)

为求解 u i u_i ui,我们现在假设 s i ′ s_i^{'} si以及平均码字长度 l ‾ ( s i ′ ) \overline{l}(s_i^{'}) l(si)是定值。因为不同的 u i u_i ui会对 p ( s i ) p(s_i^{}) p(si)产生影响,所以此时我们的最小化函数为:
D = E [ f ( s i n − s o u t ) ] + ∑ i = 0 N − 1 p ( s i ′ ) l ‾ ( s i ′ ) = ∑ i = 1 N ∫ u i u i + 1 ( s − s i ′ ) 2   f ( x )   d x + ∑ i = 0 N − 1 p ( s i ′ ) l ‾ ( s i ′ ) w h e r e   p ( s i ′ ) = ∫ u i u i + 1 f ( s ) d s \begin{aligned} D & = E[f(s_{in}-s_{out})]+\sum_{i=0}^{N-1}p(s_i^{'})\overline{l}(s_i^{'}) \\ & = \sum_{i=1}^{N} \int_{u_i}^{u_{i+1}} (s-s_i^{'})^2\ f(x)\ dx +\sum_{i=0}^{N-1}p(s_i^{'})\overline{l}(s_i^{'})\\ \\ &where\ p(s_i^{'})=\int_{u_i}^{u_{i+1}}f(s)ds \end{aligned} D=E[f(sinsout)]+i=0N1p(si)l(si)=i=1Nuiui+1(ssi)2 f(x) dx+i=0N1p(si)l(si)where p(si)=uiui+1f(s)ds
( 1 ) b e c o m e s ( f o r   p ( x i ) ≠ 0 ) f ( u i − s i − 1 ′ ) + λ l ‾ ( s i − 1 ′ ) = f ( u i − s i ′ ) + λ l ‾ ( s i ′ ) i = 2 , . . . , N         ( 3 ) \begin{aligned} (1)becomes (for\ p(x_i) \neq 0) \\ & f(u_i -s_{i-1}^{'})+\lambda \overline{l}(s_{i-1}^{'})=f(u_i-s_i^{'})+\lambda \overline{l}(s_{i}^{'}) & &i=2,...,N\ \ \ \ \ \ \ (3) \end{aligned} (1)becomes(for p(xi)=0)f(uisi1)+λl(si1)=f(uisi)+λl(si)i=2,...,N       (3)

下面我们来详细求解 u i u_i ui
我们首先定义以下:X= p ( s i − 1 ′ ) l ‾ ( s i − 1 ′ ) + p ( s i ′ ) l ‾ ( s i ′ ) p(s_{i-1}^{'})\overline{l}(s_{i-1}^{'})+p(s_i^{'})\overline{l}(s_i^{'}) p(si1)l(si1)+p(si)l(si)
∂ D ∂ u i = ∂ ∂ u i { 无 关 项 + ∫ u i − 1 u i ( s − s i − 1 ′ ) 2 f ( s )   d s + ∫ u i u i + 1 ( s − s i ′ ) 2 f ( s )   d s + p ( s i − 1 ′ ) l ‾ ( s i − 1 ′ ) + p ( s i ′ ) l ‾ ( s i ′ ) } = ∂ ∂ u i { 无 关 项 + ∫ u i − 1 u i s 2 f ( s )   d s − ∫ u i − 1 u i 2 s s i − 1 ′ f ( s )   d s + ∫ u i − 1 u i s i − 1 ′ 2 f ( s )   d s + ∫ u i u i + 1 s 2 f ( s )   d s − ∫ u i u i + 1 2 s s i ′ f ( s )   d s + ∫ u i u i + 1 s i ′ 2 f ( s )   d s + X } = ∂ ∂ u i { 无 关 项 − ∫ u i − 1 u i 2 s s i − 1 ′ f ( s )   d s + ∫ u i − 1 u i s i − 1 ′ 2 f ( s )   d s − ∫ u i u i + 1 2 s s i ′ f ( s )   d s + ∫ u i u i + 1 s i ′ 2 f ( s )   d s + X } = ∂ ∂ u i { 无 关 项 − ∫ u i − 1 u i + 1 2 s s i − 1 ′ f ( s )   d s + ∫ u i − 1 u i + 1 s i − 1 ′ 2 f ( s )   d s − ∫ u i u i + 1 2 s ( s i ′ − s i − 1 ′ ) f ( s )   d s + ∫ u i u i + 1 ( s i ′ 2 − s i − 1 ′ 2 ) f ( s )   d s } = ∂ ∂ u i { 无 关 项 − ( s i ′ − s i − 1 ′ ) F 1 ( s ) ∣ u i u i + 1 + ( s i ′ 2 − s i − 1 ′ 2 ) F 2 ( s ) ∣ u i u i + 1 = 2 ( s i ′ − s i − 1 ′ ) u i f ( u i ) − ( s i ′ 2 − s i − 1 ′ 2 ) f ( u i ) + p ′ ( s i − 1 ′ ) l ‾ ( s i − 1 ′ ) + p ′ ( s i ′ ) l ‾ ( s i ′ ) = ( s i ′ − s i − 1 ′ ) f ( u i ) { 2 u i − ( s i ′ + s i − 1 ′ ) + f ( s i − 1 ′ ) l ‾ ( s i − 1 ′ ) + f ( s i ′ ) l ‾ ( s i ′ ) } = 0 = = > u i = s i ′ + s i − 1 ′ 2 + 1 2 ⋅ l ‾ ( s i ′ ) − l ‾ ( s i − 1 ′ ) s i ′ − s i − 1 ′ \begin{aligned} \frac{\partial D}{\partial u_i}&=\frac{\partial }{\partial u_i}\{无关项+\int_{u_i-1}^{u_{i}}(s-s_{i-1}^{'})^2f(s)\ ds+\int_{u_i}^{u_{i+1}}(s-s_i^{'})^2f(s)\ ds +p(s_{i-1}^{'})\overline{l}(s_{i-1}^{'})+p(s_i^{'})\overline{l}(s_i^{'})\} \\ = \frac{\partial }{\partial u_i}\{无关项&+\int_{u_i-1}^{u_{i}}s^2f(s)\ ds -\int_{u_i-1}^{u_{i}}2ss_{i-1}^{'}f(s)\ ds +\int_{u_i-1}^{u_{i}}s_{i-1}^{'2}f(s)\ ds \\ &+\int_{u_i}^{u_{i+1}}s^2f(s)\ ds -\int_{u_i}^{u_{i+1}}2ss_{i}^{'}f(s)\ ds +\int_{u_i}^{u_{i+1}}s_{i}^{'2}f(s)\ ds +X \} \\ =\frac{\partial }{\partial u_i}\{无关项&-\int_{u_i-1}^{u_{i}}2ss_{i-1}^{'}f(s)\ ds +\int_{u_i-1}^{u_{i}}s_{i-1}^{'2}f(s)\ ds \\ &-\int_{u_i}^{u_{i+1}}2ss_{i}^{'}f(s)\ ds +\int_{u_i}^{u_{i+1}}s_{i}^{'2}f(s)\ ds +X\} \\ =\frac{\partial }{\partial u_i}\{无关项&-\int_{u_i-1}^{u_{i+1}}2ss_{i-1}^{'}f(s)\ ds +\int_{u_i-1}^{u_{i+1}}s_{i-1}^{'2}f(s)\ ds \\ &-\int_{u_i}^{u_{i+1}}2s(s_{i}^{'}-s_{i-1}^{'})f(s)\ ds +\int_{u_i}^{u_{i+1}}(s_{i}^{'2}-s_{i-1}^{'2})f(s)\ ds \} \\ &=\frac{\partial }{\partial u_i}\{无关项-(s_{i}^{'}-s_{i-1}^{'})F_1(s)|_{u_i}^{u_{i+1}}+(s_{i}^{'2}-s_{i-1}^{'2})F_2(s)|_{u_i}^{u_{i+1}} \\ &=2(s_{i}^{'}-s_{i-1}^{'})u_if(u_i)-(s_{i}^{'2}-s_{i-1}^{'2})f(u_i) +p^{'}(s_{i-1}^{'})\overline{l}(s_{i-1}^{'})+p^{'}(s_i^{'})\overline{l}(s_i^{'})\\ &=(s_{i}^{'}-s_{i-1}^{'})f(u_i)\{2u_i-(s_{i}^{'}+s_{i-1}^{'})+f(s_{i-1}^{'})\overline{l}(s_{i-1}^{'})+f(s_i^{'})\overline{l}(s_i^{'})\}=0 \\ &==>u_i=\frac{s_{i}^{'}+s_{i-1}^{'}}{2}+\frac{1}{2}\cdot \frac{\overline{l}(s_i^{'})-\overline{l}(s_{i-1}^{'})}{s_i^{'}-s_{i-1}^{'}} \end{aligned} uiD=ui{=ui{=ui{=ui{+ui1ui(ssi1)2f(s) ds+uiui+1(ssi)2f(s) ds+p(si1)l(si1)+p(si)l(si)}+ui1uis2f(s) dsui1ui2ssi1f(s) ds+ui1uisi12f(s) ds+uiui+1s2f(s) dsuiui+12ssif(s) ds+uiui+1si2f(s) ds+X}ui1ui2ssi1f(s) ds+ui1uisi12f(s) dsuiui+12ssif(s) ds+uiui+1si2f(s) ds+X}ui1ui+12ssi1f(s) ds+ui1ui+1si12f(s) dsuiui+12s(sisi1)f(s) ds+uiui+1(si2si12)f(s) ds}=ui{(sisi1)F1(s)uiui+1+(si2si12)F2(s)uiui+1=2(sisi1)uif(ui)(si2si12)f(ui)+p(si1)l(si1)+p(si)l(si)=(sisi1)f(ui){2ui(si+si1)+f(si1)l(si1)+f(si)l(si)}=0==>ui=2si+si1+21sisi1l(si)l(si1)

4.例子

下图展示了一个均值为零,方差为1的高斯分布的迭代过程。由第二部分,在码率的限制下我们的 u i u_i ui的迭代表达式为:
u i = s i ′ + s i − 1 ′ 2 + 1 2 ⋅ l ‾ ( s i ′ ) − l ‾ ( s i − 1 ′ ) s i ′ − s i − 1 ′ u_i=\frac{s_{i}^{'}+s_{i-1}^{'}}{2}+\frac{1}{2}\cdot \frac{\overline{l}(s_i^{'})-\overline{l}(s_{i-1}^{'})}{s_i^{'}-s_{i-1}^{'}} ui=2si+si1+21sisi1l(si)l(si1)
其结果是决策阈值 u i u_i ui的改变从两个重建level的均值向间隔码字长度长的方向平移,即使码字长度长的 s i ′ s_i^{'} si分配的概率较小,从而减少平均码率。
也就是说, u N / 2 u_{N/2} uN/2越接近于零(对于0附近概率密度较大的函数),得到的distortion越小,此时,各个 p ( s i ′ ) p(s_i^{'}) p(si)的概率越接近,但此时所需要的entropy也越大;在相应的拉格朗日参数作用下,将 u i u_i ui s i + 1 ′ s_{i+1}^{'} si+1偏,D和拉格朗日参数 λ \lambda λ持相反的作用。
在这里插入图片描述
在这里插入图片描述
上图左侧,划分的间隔较多,所以一开始初始化的 u i , s i ′ u_i,s_i^{'} ui,si都较小,所以 λ \lambda λ参数起的作用较大,向外偏;针对有图来说的话,划分的间隔较少,初试的 u i , s i ′ u_i,s_i^{'} ui,si都较大,所以一开始D起的作用较大,当 u i u_i ui减小到一定值之后,粉红色区域的概率很容易就大于绿色的区域,所以此时distortion D和拉格朗日参数 λ \lambda λ u i u_i ui起的作用都相同,都是使得 u i u_i ui趋向于0。
博客园

Reference:Source coding

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值