问题描述
输入
输入有多组测试例。输入数据的第一行是测试例的个数T。
每个测试例两行:第一行是一个整数n(1≤n≤5000),表示有多少根木棒;第二行包括n×2个整数,表示l1,w1,l2,w2,l3,w3,…,ln,wn,其中li和wi表示第i根木棒的长度和重量。数据由一个或多个空格分隔。
输出
输出是以分钟为单位的最少准备时间,一行一个。
算法分析
本题仅仅使用贪心算法是不够的,排序之后还要使用动态规划的算法。
(1)数据结构
采用结构体表示木棒的信息:
#define maxN 5001
struct stick
{
int l; //木棒的长度
int w; //木棒的重量
};
stick data[maxN]; //存放所有木棒
(2)按木棒的长度使用贪心算法
利用C++的标准模板库函数sort()实现排序:
sort(data, data+n, cmp);
排序函数cmp()的实现:
int cmp(stick a, stick b)
{
//长度相等时,按重量排序
if (a.l == b.l) return a.w < b.w;
//优先按长度排序
else if (a.l < b.l) return true;
return false;
}
代码
计算重量w的最长单调递增子序列个数的动态规划实现
#include<bits/stdc++.h>
using namespace std;
#define maxN 5001
struct stick
{
int l; //木棒的长度
int w; //木棒的重量
};
//形参n是木棒的数量,stick是木棒参数的数组
int LIS(int n, stick a[])
{
int b[maxN]; //数组b表示木棒分组的序号
memset(b, 0, sizeof(b));
int i, j, k;
b[0]=1;
for (i=1; i<n; i++)
{
//计算第i个木棒的的分组序号
k=0;
for (j=0; j<i; j++)
if (a[i].w<a[j].w && k<b[j]) k=b[j];
b[i]=k+1;
}
//查找最大的分组序号(数组b中的最大值)
int max=0;
for (i=0; i<n; i++)
if (b[i]>max) max=b[i];
return max;
}
int cmp(stick a, stick b)
{
//长度相等时,按重量排序
if(a.l == b.l)
return a.w < b.w;
//优先按长度排序
else if (a.l < b.l)
return true;
return false;
}
int main()
{
stick data[maxN];//存放所有木棒
int i,k;
int test;
cin>>test;
for(k = 0; k < test; ++k)
{
int n;
cin>>n;
for(i = 0; i < n; ++i)
cin>>data[i].l>>data[i].w;
sort(data, data+n, cmp);
cout<< LIS(n, data)<<endl;
}
return 0;
}