1.下载最新版本的pytorch
https://pytorch.org/官网可以根据操作系统,选择cuda版本, 和选择conda命令还是pip命令:
例如下载最新版本的pytorch命令为:
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
例如我的cuda11.4
# 11.3
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
如果下载很慢使用临时镜像:
参考链接: https://blog.csdn.net/qq_39909808/article/details/121216315
切换镜像源:
豆瓣:
http://pypi.douban.com/simple/
清华:
https://pypi.tuna.tsinghua.edu.cn/simple
阿里云:
http://mirrors.aliyun.com/pypi/simple/
山东理工大学:
http://pypi.sdutlinux.org/
中国科技大学
https://pypi.mirrors.ustc.edu.cn/simple/
华中科技大学:
http://pypi.hustunique.com/
例如下载12.1. 2.2.0版本
pip install torch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 --index-url https://download.pytorch.org/whl/cu121 -i https://pypi.tuna.tsinghua.edu.cn/simple
2.pytorch历史版本下载
网址:https://pytorch.org/get-started/previous-versions/
3.下载完成后检测gpu是否可用
代码:
import torch
torch.cuda.is_available()
输出为ture表示gpu可用
只是检测CUDA是否安装正确并能被Pytorch检测到,并没有说明是否能正常使用,要想看Pytorch能不能调用cuda加速,还需要简单的测试一下:
a=torch.Tensor([1,2])
a=a.cuda()
a