Hadoop MapReduce 求公司部门员工工资总和案例实现!

本文介绍如何使用Hadoop MapReduce编程模型来计算公司各部门员工的工资总和,通过具体实例详细展示了MapReduce程序的设计与实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.回顾MapReduce的WordCount程序

这是MapReduce Wordcount程序,结合起来看感觉更容易理解MapReduce程序的写法。这是WordcCount程序:MapReduce的WordCount程序

2.公司各部门员工薪水表

这是一张员工工资表,是csv文件类型,这里用两个部门举例分别是10号部门和20号部门,我们要做的是将10号部门与20号部门的员工工资总和分别求取出来。
在这里插入图片描述
在这里插入图片描述

3.编写MapReduce程序

其实编写这个程序和变写MapReduce WordCount程序是一样的,只需修改我们Mapper端,Reducer端的输入输出的数据类型,以及我们的主程序的Mapper端,Reducer端的输出的数据类型,即可。
Mapper端

package infoSalary;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * @author ganxiang
 * IDE      IntelliJ IDEA
 * @project_name and filename HadoopTraining SalaryMapper
 * @date 2020/04/25 0025 13:41
 */

public class SalaryMapper extends Mapper<LongWritable, Text, IntWritable,IntWritable> {
    @Override
    protected void map(LongWritable key1, Text value1, Context context) throws IOException, InterruptedException {
        //1,获取数据
        String line =value1.toString();
        //2,分割数据
        String [] data =line.split(",");
        //3,写出数据
        context.write(new IntWritable(Integer.parseInt(data[1])),new IntWritable(Integer.parseInt(data[2])));
    }
}

Reducer端

package infoSalary;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
 * @author ganxiang
 * IDE      IntelliJ IDEA
 * @project_name and filename HadoopTraining SalaryReducer
 * @date 2020/04/25 0025 13:47
 */

public class SalaryReducer extends Reducer<IntWritable,IntWritable,IntWritable,IntWritable> {

    @Override
    protected void reduce(IntWritable key3, Iterable<IntWritable> values3, Context context) throws IOException, InterruptedException {
        int sum =0;
        //1,求取部门工资总和
        for (IntWritable count:values3){
            sum+=count.get();
        }
        //2,写出部门号以及部门员工工资总和
        context.write(key3,new IntWritable(sum));

    }
}

Job端

package infoSalary;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
 * @author ganxiang
 * IDE      IntelliJ IDEA
 * @project_name and filename HadoopTraining SalaryJob
 * @date 2020/04/25 0025 13:53
 */

public class SalaryJob {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        //1,创建一个job
        Job salaryJob =Job.getInstance(new Configuration());
        //2,设置job的入口函数
        salaryJob.setJarByClass(SalaryJob.class);
        //3,设置mapper
        salaryJob.setMapperClass(SalaryMapper.class);
        salaryJob.setMapOutputKeyClass(IntWritable.class);
        salaryJob.setMapOutputValueClass(IntWritable.class);
        //4,设置reducer
        salaryJob.setReducerClass(SalaryReducer.class);
        salaryJob.setOutputKeyClass(IntWritable.class);
        salaryJob.setOutputValueClass(IntWritable.class);
        //5,设置数据的存放路径
        FileInputFormat.setInputPaths(salaryJob,new Path(args[0]));
        FileOutputFormat.setOutputPath(salaryJob,new Path(args[1]));
        //6,提交任务
        salaryJob.waitForCompletion(true);
    }

}

4.上传jar包以及执行jar需要注意的地方

从IDEA中打好jar包,上传到我们的虚拟环境中。在执行jar的时候需要注意一点,如果我们在同一个项目中编写了多个MapReduce程序并打成jar执行,需要在执行的时候指定package在的主函数名,如果不指定将报错无法找到主函数运行失败。如果没有在一个项目中写多个MapReduce程序打成jar包,忽略此信息。
1,此时我们的项目结构为这样的。
在这里插入图片描述
2,如果这样hadoop jar jar名执行将报错,因为同一个项目中存在多个MapReduce程序。
在这里插入图片描述
3,这样执行即可解决问题,hadoop jar jar名 package名.主函数名 。

 hadoop jar sumsalary.jar infoSalary.SalaryJob  /salary/salary.csv /output/salary

在这里插入图片描述

5.查看执行结果

5.1,任务执行成功

在这里插入图片描述
2,各部门的员工工资总和为10号部门1600,20号部门2400,经过计算没有误差。
在这里插入图片描述
ok,完工,都看到这儿了,点赞在走呗🤞🤞🤞🤞。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值