【零知识证明】Groth16

一 相关介绍

1 Groth16

Groth16是一种用于零知识证明系统中的简洁非交互式知识论证(SNARK)协议,是一种表示计算的方式,在算术电路上操作,使用加法和乘法门。使用配对友好的椭圆曲线来实现高效的证明生成和验证。

Groth16的主要特点包括:

--1. 简洁性:生成的证明非常小,通常只有几百字节。

--2. 高效验证:验证过程计算量小,速度快。

--3. 非交互式:证明者只需发送一个证明,无需与验证者进行多轮交互。

--4. 通用性:可以用于各种计算问题的零知识证明。

--5. 安全性:基于一些标准的密码学假设。

2 Powers of Tau

Powers of Tau是零知识证明系统中的一个重要概念,特别是在zk-SNARKs(零知识简洁非交互式知识论证)中。它是一个多方计算(MPC)仪式,用于生成zk-SNARK系统的初始可信设置。旨在创建一个通用的加密"材料",可以用于后续的零知识证明。这个名字来源于希腊字母τ(tau),在这个过程中,计算τ的不同幂次(powers)。主要特点包括:

--1.安全性:只要参与仪式的至少一方是诚实的,整个系统就是安全的。

--2.可累积:多个参与者可以依次贡献自己的随机性。

--3.通用性:生成的结构可以用于多个不同的电路和证明。

二 Groth16设置

Phase 1 

1 启动一个新的Powers of Tau仪式

使用snarkjs工具创建Powers of Tau仪式的初始文件

snarkjs powersoftau new bn128 12 ceremoy_0000.ptau -v
  • snarkjs: 用于生成和验证零知识证明的JavaScript库。
  • powersoftau: snarkjs中的一个子命令,用于执行Powers of Tau仪式。
  • new: 表示我们要创建一个新的Powers of Tau仪式。
  • bn128: 指定使用的椭圆曲线类型。BN128(也称为BN254)是一种常用于零知识证明的配对友好曲线。
  • 12: 多项式的最大幂次,决定了电路的最大大小。2^12 = 4096࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神通广大白居易

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值