AVL树(平衡二叉树)讲解,入门篇,适合新手观看

1.1 概念

平衡二叉树就是为了让二叉搜索树的平均查找长度更短,时间复杂度更靠近logN,如果一个二叉搜索树不平衡了就会出现图1情况,完全变成一个数组,时间复杂度也变为了O(N)。
平衡因子:平衡因子就是针对于树中某一结点,它的左子树高度减去右子树的高度所得结果就是它的平衡因子,如果这个平衡因子的绝对值等于2的话,那么这个树就认为出现了不平衡状况,我们就需要修正这个树,缩小它的平衡因子,缩小平衡因子,也就是让树的左右两端高度更均匀平衡,让高度越靠近log2N+1(N个结点构成的二叉树的高度)。
在这里插入图片描述

查找长度:查找长度就是查找运算中需要比较的次数,树的高度越小,查找长度就越小,查找效率就越高。它的定义如下:在这里插入图片描述

n为查找表中元素个数,Pi为查找第i个元素的概率,通常假设每个元素查找概率相同,Pi=1/n,Ci是找到第i个元素的比较次数,显然AVL树中每个节点的比较次数与它所在的层数有关,AVL树本质还是二叉搜索树,二叉搜索树又与线性二分查找一样。
这个集合中,找到每个数的概率都相同,为1/9,第一次查找,就是数组中间那个元素也就是5,第二次查找,有两个方向,向右或者向左指向2或者7,第三次查找有四种可能(1 or 3 or 6 or 8 ) ,第四次有两种可能(4 or 9) ,于是可以算出期望1x1/9+2x2/9+3x4/9+4x2/9=25/9,也就是我们给出一个数,平均要比较两次就能找到,将这个数组抽象为二叉搜索树,通过查找长度公式也能得出这棵树的平均查找长度是25/9。
在这里插入图片描述

1.2 修正树,缩小平衡因子的方法

第一种(左旋)
如果插入一个结点(插入点)到另一个结点A的左儿子的左子树而导致树失衡的话,也就是三点连成一条直线(A,A左儿子,插入点),那么我们采用左旋来解决这种情况,我们旋转时以谁为支点,旋转它的子树呢?是以最先发现树不平衡的那位结点,也就是从下往上,第一个平衡因子为2的那个结点。

在这里插入图片描述

首先8肯定是最先发现树不平衡的结点,此时以8为支点,将它的子树向左(顺时针)移动,想象着把他它的子树装进麻袋里看作一个整体来进行移动,最后移动到位置后再拆开,此时树结构会发生变化,由于5结点的right指向了8,6这个点变得孤立无援,但由于树结构发生变化,点8的left是空着的,于是就让支点8的left的来指向它。
左旋模板
在这里插入图片描述


第二种(右旋)
如果插入一个结点(插入点)到另一个结点A的右儿子的右子树而导致树失衡的话,也就是三点连成一条直线(A,A右儿子,插入点),那么我们采用左旋来解决这种情况。
右旋模板
在这里插入图片描述
可以看见A与A的右儿子B,以及插入点,这三点构成向右的一条直线


第三种 左右旋:如果插入一个结点(插入点)到另一个结点A的左儿子的右子树而导致树失衡的话,也就是三点连不成一条直线(A,A左儿子,插入点),那么我们采用左右旋来解决这种情况,左右旋实际就是以A的左儿子为支点对它的右子树进行一次右旋,然后以A为支点对它左子树进行一次左旋


第四种 右左旋:如果插入一个结点(插入点)到另一个结点A的右儿子的左子树而导致树失衡的话,也就是三点连不成一条直线(A,A右儿子,插入点),那么我们采用右左旋来解决这种情况,右左旋实际就是以A的右儿子为支点对它的左子树进行一次左旋,然后以A为支点对它右子树进行一次右旋


java代码实现

class AVLTree {
    Tree root;

    public void Insert(int Data){
        root=Tree.InsertNode(root,Data);
    }
    public void Inorder(){
        Tree.Inorder(root);
    }
    public int Height(){
       return Tree.MaxHeight(root);
    }
}

public class Tree {
    Tree left;
    Tree right;
    int Data;

    public Tree(int Data){
        this.Data=Data;
    }

    public  static Tree InsertNode(Tree root, int Data){
        if(root==null){
            Tree node = new Tree(Data);
            return node;
        }
        else {
            if (Data > root.Data) {//插入的是右子树
                root.right = InsertNode(root.right, Data);
                if(MaxHeight(root.left)-MaxHeight(root.right)==-2){
                    if(Data>root.right.Data)//右旋
                        root=rightTrans(root);
                    else
                        root=right_left_Trans(root);

                }
            } else if (Data <= root.Data) {//插入的左子树
                root.left = InsertNode(root.left, Data);
                if(MaxHeight(root.left)-MaxHeight(root.right)==2){
                    if(Data<root.left.Data)//左旋
                        root=rightTrans(root);
                    else
                        root=left_right_Trans(root);
                }
            }
        }
        return root;
    }

    public static Tree Delete(Tree node, int Data){
        if(node==null){
            return null;   //未找到
        }

        //先找到要删除的节点
        if(Data>node.Data){
            node.right = Delete(node.right,Data);
        }
        else
        if(Data<node.Data){
            node.left = Delete(node.left,Data);
        }
        else{//找到了
            if(node.left!=null && node.right!=null){
                node.Data=findInsteadNode(node.left);
                Delete(node.left,Data);
            }
            else{
                if(node.right!=null)
                    node=node.right;
                else
                if(node.left!=null)
                    node=node.left;
                else
                    node=null;
            }
        }

        return node;
    }

    public static int findInsteadNode(Tree node){
        if(node.right!=null)
            return findInsteadNode(node.right);
        else
            return node.Data;

    }

    public static void Inorder(Tree node){
        if(node!=null){
            Inorder(node.left);
            System.out.println(node.Data+" ");
            Inorder(node.right);
        }

    }

    //高度计算函数
    public static int MaxHeight(Tree node){
        int leftHeight,rightHeight;
        if(node!=null){
            leftHeight=MaxHeight(node.left);
            rightHeight=MaxHeight(node.right);
            return (leftHeight>rightHeight ?leftHeight:rightHeight)+1;
        }
        return 0;
    }

    //右旋
    public static Tree rightTrans(Tree A){
         Tree B=A.right;
         A.right=B.left;
         B.left=A;
         return B;
    }



    //左右旋
    public static Tree left_right_Trans(Tree A){
        Tree B=A.left;
        A.left=rightTrans(B);
        return leftTrans(A);

    }


    //左旋
    public static Tree leftTrans(Tree A){
        Tree B=A.left;
        A.left=B.right;
        B.right=A;
        return B;
    }

    //右左旋
    public static Tree right_left_Trans(Tree A){
        Tree B=A.right;
        A.right=leftTrans(B);
        return rightTrans(A);

    }

    public static void main(String[] args) {
        AVLTree avlTree = new AVLTree();
        avlTree.Insert(10);
        avlTree.Insert(15);
        avlTree.Insert(5);
        avlTree.Insert(3);
        avlTree.Insert(8);
        avlTree.Insert(6);
    }
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值