1. 带有一个隐藏层的平面数据分类

本文主要参考了 严宽 大神的学习笔记,并在其基础上补充了一点内容,点此查看原文
使用 jupyter notebook 运行本文代码时,请先在目录下创建 testCases.py 和 planar_utils.py 文件,其代码在文末。

import numpy as np
import matplotlib.pyplot as plt
from testCases import *       # 提供一些测试实例来评估函数的正确性
import sklearn
import sklearn.datasets
import sklearn.linear_model
# 提供了在这个任务中使用的各种有用的功能
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets

np.random.seed(1)  # 设置一个固定的随机种子,以保证接下来的步骤我们的结果是一致的

1. 加载和查看数据集

首先,我们来看看我们将要使用的数据集,下面的代码会将一个花的图案的 2 分类数据集加载到变量 X 和 Y 中,然后使用 matplotlib 可视化数据集。

# 将一个花的图案的2分类数据集加载到变量 X 和 Y 中
X, Y = load_planar_dataset()

# 绘制散点图
plt.scatter(X[0, :], X[1, :], c=np.squeeze(Y), s=40, cmap=plt.cm.Spectral)

在这里插入图片描述
数据看起来像是一些红色(y = 0)和一些蓝色(y = 1)的数据点的花朵的图案。我们的目标是构建一个模型来适应这些数据。现在,我们已经有了一下数据
  ① X:一个 numpy 矩阵,包含了这些数据点的数值
  ② Y:一个 numpy 向量,包含了这些数据点对应的标签【0 | 1】(红色:0,蓝色:1)

shape_X = X.shape   # X 的维度        (2, 400)
shape_Y = Y.shape   # Y 的维度        (1, 400)
m = Y.shape[1]     # 训练集里面的数量  400

print("X 的维度为:" + str(shape_X))
print("Y 的维度为:" + str(shape_Y))
print("数据集里面的数据有:" + str(m) + " 个")

2. 逻辑回归

在构建完整的神经网络之前,先让我们看看逻辑回归在这个问题上的表现如何,我们可以使用 sklearn 的内置函数来做到这一点,运行下面的代码来训练数据集上的逻辑回归分类器。

clf = sklearn.linear_model.LogisticRegressionCV()
clf.fit(X.T, Y.T)

我们可以把逻辑回归分类器的分类结果绘制出来,逻辑回归的准确性的计算公式为: a c c u r a c y = y ⋅ y p r e d i c t + ( 1 − y ) ⋅ ( 1 − y p r e d i c t ) accuracy = y·y_{predict} + (1 - y)·(1 - y_{predict}) accuracy=yypredict+(1y)(1ypredict)

plot_decision_boundary(lambda x: clf.predict(x), X, Y)   # 绘制决策边界
plt.title("Logistic Regression")   # 图标题
LR_predictions = clf.predict(X.T)  # 预测结果 
print ("逻辑回归的准确性: %d " % float((np.dot(Y, LR_predictions) + np.dot(1 - Y,1 - LR_predictions)) 
        / float(Y.size) * 100) + "% " + "(正确标记的数据点所占的百分比)")    # 47%

在这里插入图片描述
这里准确率只有 47% 的原因是数据集是非线性可分的,所以逻辑回归表现不佳,现在我们正式开始构建神经网络。


3. 搭建神经网络

我们要搭建的神经网络模型如下图:
在这里插入图片描述
当然,我们还有一系列的理论推导(不懂可以去仔细看看视频):
对于 x ( i ) x^{(i)} x(i) 而言,这里第一层激活函数用 t a n h tanh tanh,第二层激活函数用 s i g m o i d sigmoid sigmoid z [ 1 ] ( i ) = W [ 1 ] x ( i ) + b [ 1 ] ( i ) (1) z^{[1](i)}=W^{[1]}x^{(i)}+b^{[1](i)} \tag{1} z[1](i)=W[1]x(i)+b[1](i)(1) a [ 1 ] ( i ) = t a n h ( z [ 1 ] ( i ) ) (2) a^{[1](i)}=tanh(z^{[1](i)}) \tag{2} a[1](i)=tanh(z[1](i))(2) z [ 2 ] ( i ) = W [ 2 ] a [ 1 ] ( i ) + b [ 2 ] ( i ) (3) z^{[2](i)}=W^{[2]}a^{[1](i)}+b^{[2](i)} \tag{3} z[2](i)=W[2]a[1](i)+b[2](i)(3) a [ 2 ] ( i ) = s i g m o i d ( z [ 2 ] ( i ) ) (4) a^{[2](i)}=sigmoid(z^{[2](i)}) \tag{4} a[2](i)=sigmoid(z[2](i))(4) y ^ ( i ) = { 1 , a [ 2 ] ( i ) ≥ 0.5 0 , a [ 2 ] ( i ) < 0.5 (5) \hat{y}^{(i)}=\left\{ \begin{matrix} 1 & , & a^{[2](i)} \geq 0.5 \\ 0 & , & a^{[2](i)} < 0.5 \end{matrix} \right. \tag{5} y^(i)={10,,a[2](i)0.5a[2](i)<0.5(5)给出所有示例的预测结果,可以按如下方式计算成本 J: J = − 1 m ∑ i = 0 m ( y ( i ) log ⁡ ( a [ 2 ] ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − a [ 2 ] ( i ) ) ) (6) J = -\frac{1}{m}\sum_{i=0}^{m}{\Big(y^{(i)}\log (a^{[2](i)})+(1 - y^{(i)})\log(1 - a^{[2](i)})\Big)} \tag{6} J=m1i=0m(y(i)log(a[2](i))+(1y(i))log(1a[2](i)))(6)构建神经网络的一般方法是:
  1.定义神经网络结构(输入单元的数量,隐藏单元的数量等)
  2.初始化模型的参数
  3.循环
    (1)前向传播
    (2)计算损失
    (3)后向传播
    (4)更新参数(梯度下降)
分别完成上述步骤后,再将其整合到一个 nn_model() 函数中,当我们构建好了 nn_model() 并学习到了正确的参数,我们就可以预测新的数据。

1. 定义神经网络

在构建之前,我们要先把神经网络的结构给定义好:

  • n_x:输入层的节点数量
  • n_h:隐藏层的节点数量(这里设置为 4)
  • n_y:输出层的节点数量
def layer_sizes(X , Y):
    """
    参数:
     X - 输入数据集,维度为(输入的数量,训练/测试的数量)
     Y - 标签,维度为(输出的数量,训练/测试数量)
    
    返回:
     n_x - 输入层的节点数量
     n_h - 隐藏层的节点数量
     n_y - 输出层的节点数量
    """
    n_x = X.shape[0] #输入层
    n_h = 4          #隐藏层
    n_y = Y.shape[0] #输出层
    
    return (n_x, n_h, n_y)
#测试layer_sizes
print("=========================测试layer_sizes=========================")
X_asses , Y_asses = layer_sizes_test_case()
(n_x,n_h,n_y) =  layer_sizes(X_asses,Y_asses)
print("输入层的节点数量为: n_x = " + str(n_x))      # 输入层的节点数量为: n_x = 5
print("隐藏层的节点数量为: n_h = " + str(n_h))      # 隐藏层的节点数量为: n_h = 4
print("输出层的节点数量为: n_y = " + str(n_y))      # 输出层的节点数量为: n_y = 2
2. 初始化模型参数

我们将会用随机值初始化权重矩阵:

  • np.random.randn(a, b) * 0.01:利用正态分布随机初始化一个维度为 (a, b) ,值在 0~0.01 的矩阵
def initialize_parameters(n_x, n_h, n_y):
    """
    参数:
        n_x - 输入层节点的数量
        n_h - 隐藏层节点的数量
        n_y - 输出层节点的数量
    
    返回:
        parameters - 包含参数的字典:
            W1 - 权重矩阵,维度为(n_h,n_x)
            b1 - 偏向量,维度为(n_h,1)
            W2 - 权重矩阵,维度为(n_y,n_h)
            b2 - 偏向量,维度为(n_y,1"""
    np.random.seed(2)   # 指定一个随机种子,以便你的输出与我们的一样
    W1 = np.random.randn(n_h, n_x) * 0.01
    b1 = np.zeros(shape=(n_h, 1))
    W2 = np.random.randn(n_y, n_h) * 0.01
    b2 = np.zeros(shape=(n_y, 1))
    
    # 使用断言确保我的数据格式是正确的
    assert(W1.shape == ( n_h , n_x ))
    assert(b1.shape == ( n_h , 1 ))
    assert(W2.shape == ( n_y , n_h ))
    assert(b2.shape == ( n_y , 1 ))
    
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    
    return parameters
#测试initialize_parameters
print("=========================测试initialize_parameters=========================")    
n_x , n_h , n_y = initialize_parameters_test_case()
parameters = initialize_parameters(n_x , n_h , n_y)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
3. 循环
(1)前向传播

前向传播的步骤如下:

  • 使用字典类型的 parameters(它是 initialize_parameters() 的输出)检索每个参数
  • 实现前向传播,计算 Z [ 1 ] , A [ 1 ] , Z [ 2 ] , A [ 2 ] Z^{[1]},A^{[1]},Z^{[2]},A^{[2]} Z[1],A[1],Z[2],A[2](训练集里面所有例子的预测向量)
  • 反向传播所需的值存储在 cache 中,cache 将作为反向传播函数的输入
def forward_propagation(X, parameters):
    """
    参数:
         X - 维度为(n_x,m)的输入数据。
         parameters - 初始化函数(initialize_parameters)的输出
    
    返回:
         A2 - 使用sigmoid()函数计算的第二次激活后的数值
         cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型变量
     """
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    
    # 前向传播计算 A2
    Z1 = np.dot(W1, X) + b1
    A1 = np.tanh(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = sigmoid(Z2)
    
    # 使用断言确保我的数据格式是正确的
    assert(A2.shape == (1, X.shape[1]))
    
    cache = {"Z1": Z1,
             "A1": A1,
             "Z2": Z2,
             "A2": A2}
    
    return (A2, cache)
#测试forward_propagation
print("=========================测试forward_propagation=========================") 
X_assess, parameters = forward_propagation_test_case()
A2, cache = forward_propagation(X_assess, parameters)
print(np.mean(cache["Z1"]), np.mean(cache["A1"]), np.mean(cache["Z2"]), np.mean(cache["A2"]))
(2)计算损失

可以按如下方式计算成本 J: J = − 1 m ∑ i = 0 m ( y ( i ) log ⁡ ( a [ 2 ] ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − a [ 2 ] ( i ) ) ) (6) J = -\frac{1}{m}\sum_{i=0}^{m}{\Big(y^{(i)}\log (a^{[2](i)})+(1 - y^{(i)})\log(1 - a^{[2](i)})\Big)} \tag{6} J=m1i=0m(y(i)log(a[2](i))+(1y(i))log(1a[2](i)))(6)

def compute_cost(A2, Y, parameters):
    """
    计算方程(6)中给出的交叉熵成本,
    
    参数:
         A2 - 使用sigmoid()函数计算的第二次激活后的数值
         Y - "True"标签向量,维度为(1,数量)
         parameters - 一个包含W1,B1,W2和B2的字典类型的变量
    
    返回:
         成本 - 交叉熵成本
    """
    m = Y.shape[1]
    W1 = parameters["W1"]
    W2 = parameters["W2"]
    
    # 计算成本
    logprobs = np.multiply(np.log(A2), Y) + np.multiply((1 - Y), np.log(1 - A2))
    cost = -np.sum(logprobs) / m
    cost = float(np.squeeze(cost))
    
    assert(isinstance(cost, float))
    
    return cost

测试一下我们的成本函数:

#测试compute_cost
print("=========================测试compute_cost=========================") 
A2 , Y_assess , parameters = compute_cost_test_case()
print("cost = " + str(compute_cost(A2,Y_assess,parameters)))   # cost = 0.6929198937761266

使用正向传播期间计算的 cache,现在可以利用它实现反向传播。

(3)后向传播

反向传播就是从后往前推导进而求出十分复杂的导数,根据反向传播的公式以及链式求导法则,可以得出各个偏导数的公式:
在这里插入图片描述
在这里插入图片描述
为了计算 d Z 1 dZ1 dZ1,这里需要计算 g [ 1 ] ′ ( Z [ 1 ] ) g^{[1]'}(Z^{[1]}) g[1](Z[1]),其中 g [ 1 ] ( …   ) g^{[1]}(\dots) g[1]() t a n h tanh tanh 激活函数,如果 a = g [ 1 ] ( z ) a=g^{[1]}(z) a=g[1](z),那么 g [ 1 ] ′ ( z ) = 1 − a 2 g^{[1]'}(z)=1 -a^2 g[1](z)=1a2。所以我们需要使用 (1 - np.power(A1, 2)) 来计算 g [ 1 ] ′ ( Z [ 1 ] ) g^{[1]'}(Z^{[1]}) g[1](Z[1])

def backward_propagation(parameters, cache, X, Y):
    """
    使用上述说明搭建反向传播函数。
    
    参数:
     parameters - 包含我们的参数的一个字典类型的变量。
     cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型的变量。
     X - 输入数据,维度为(2,数量)
     Y - “True”标签,维度为(1,数量)
    
    返回:
     grads - 包含W和b的导数一个字典类型的变量。
    """
    m = X.shape[1]
    
    W1 = parameters["W1"]
    W2 = parameters["W2"]
    
    A1 = cache["A1"]
    A2 = cache["A2"]
    
    dZ2 = A2 - Y
    dW2 = (1 / m) * np.dot(dZ2, A1.T)
    db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)
    dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2))
    dW1 = (1 / m) * np.dot(dZ1, X.T)
    db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)
    
    grads = {"dW1": dW1,
             "db1": db1, 
             "dW2": dW2,
             "db2": db2}
    
    return grads

测试一下反向传播函数:

#测试backward_propagation
print("=========================测试backward_propagation=========================")
parameters, cache, X_assess, Y_assess = backward_propagation_test_case()

grads = backward_propagation(parameters, cache, X_assess, Y_assess)
print ("dW1 = "+ str(grads["dW1"]))
print ("db1 = "+ str(grads["db1"]))
print ("dW2 = "+ str(grads["dW2"]))
print ("db2 = "+ str(grads["db2"]))
(4)更新参数

我们需要使用 ( d W 1 , d b 1 , d W 2 , d b 2 ) (dW1, db1, dW2, db2) (dW1,db1,dW2,db2) 来更新 ( W 1 , b 1 , W 2 , b 2 ) (W1, b1, W2, b2) (W1,b1,W2,b2)
更新算法如下: θ : = θ − α ∂ J ∂ θ \theta := \theta - \alpha \frac{\partial J}{\partial \theta} θ:=θαθJ其中 α \alpha α 是学习率, θ \theta θ 就是 ( b , W ) (b, W) (b,W) 组成的参数向量。
一下两个图分别代表了具有良好学习速率(收敛)和不良学习速率(发散)的梯度下降算法。
在这里插入图片描述
在这里插入图片描述

def update_parameters(parameters, grads, learning_rate=1.2):
    """
    使用上面给出的梯度下降更新规则更新参数
    
    参数:
     parameters - 包含参数的字典类型的变量。
     grads - 包含导数值的字典类型的变量。
     learning_rate - 学习速率
    
    返回:
     parameters - 包含更新参数的字典类型的变量。
    """
    W1, W2 = parameters["W1"], parameters["W2"]
    b1, b2 = parameters["b1"], parameters["b2"]
    
    dW1, dW2 = grads["dW1"], grads["dW2"]
    db1, db2 = grads["db1"], grads["db2"]
    
    W1 = W1 - learning_rate * dW1
    b1 = b1 - learning_rate * db1
    W2 = W2 - learning_rate * dW2
    b2 = b2 - learning_rate * db2
    
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    
    return parameters

测试一下update_parameters()

print("=========================测试update_parameters=========================")
parameters, grads = update_parameters_test_case()
parameters = update_parameters(parameters, grads)

print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
4. 整合

我们现在把上面的东西整合到 nn_model() 中,神经网络i模型必须以正确的顺序使用先前的功能。

def nn_model(X, Y, n_h, num_iterations, print_cost=False):
    """
    参数:
        X - 数据集,维度为(2,示例数)
        Y - 标签,维度为(1,示例数)
        n_h - 隐藏层的数量
        num_iterations - 梯度下降循环中的迭代次数
        print_cost - 如果为True,则每1000次迭代打印一次成本数值
    
    返回:
        parameters - 模型学习的参数,它们可以用来进行预测。
     """
     
    np.random.seed(3) #指定随机种子
    n_x = layer_sizes(X, Y)[0]
    n_y = layer_sizes(X, Y)[2]
    
    parameters = initialize_parameters(n_x, n_h, n_y)
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    
    for i in range(num_iterations):
        A2 , cache = forward_propagation(X, parameters)
        cost = compute_cost(A2, Y, parameters)
        grads = backward_propagation(parameters, cache, X, Y)
        parameters = update_parameters(parameters, grads, learning_rate = 0.5)
        
        if print_cost:
            if i%1000 == 0:
                print("第 ",i," 次循环,成本为:"+str(cost))
    return parameters

测试 nn_model()

print("=========================测试nn_model=========================")
X_assess, Y_assess = nn_model_test_case()

parameters = nn_model(X_assess, Y_assess, 4, num_iterations=10000, print_cost=False)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
5. 预测

构建 predict() 来使用模型进行预测, 使用向前传播来预测结果。

def predict(parameters, X):
    """
    使用学习的参数,为X中的每个示例预测一个类
    
    参数:
        parameters - 包含参数的字典类型的变量。
        X - 输入数据(n_x,m)
    
    返回
        predictions - 我们模型预测的向量(红色:0 /蓝色:1"""
    A2, cache = forward_propagation(X, parameters)
    predictions = np.round(A2)   # 将数字四舍五入为整数
    
    return predictions

测试 predict()

print("=========================测试predict=========================")

parameters, X_assess = predict_test_case()

predictions = predict(parameters, X_assess)
print("预测的平均值 = " + str(np.mean(predictions)))
6. 运行模型
parameters = nn_model(X, Y, n_h = 4, num_iterations=10000, print_cost=True)

# 绘制边界
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
plt.title("Decision Boundary for hidden layer size " + str(4))

predictions = predict(parameters, X)
print("准确率:%d" % float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) + '%')

运行结果:
在这里插入图片描述

7. 更改隐藏层节点数量
plt.figure(figsize=(16, 32))
hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50]  # 隐藏层数量
for i, n_h in enumerate(hidden_layer_sizes):
    plt.subplot(5, 2, i + 1)
    plt.title('Hidden Layer of size %d' % n_h)
    parameters = nn_model(X, Y, n_h, num_iterations=5000)
    plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
    predictions = predict(parameters, X)
    accuracy = float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100)
    print ("隐藏层的节点数量: {}  ,准确率: {} %".format(n_h, accuracy))

运行结果:
  隐藏层的节点数量: 1 ,准确率: 67.25 %
  隐藏层的节点数量: 2 ,准确率: 66.5 %
  隐藏层的节点数量: 3 ,准确率: 89.25 %
  隐藏层的节点数量: 4 ,准确率: 90.0 %
  隐藏层的节点数量: 5 ,准确率: 89.75 %
  隐藏层的节点数量: 20 ,准确率: 90.0 %
  隐藏层的节点数量: 50 ,准确率: 89.75 %
在这里插入图片描述

4. testCases 和 planar_utils 文件

1. testCases.py
#-*- coding: UTF-8 -*-
"""
# WANGZHE12
"""
import numpy as np

def layer_sizes_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(5, 3)
    Y_assess = np.random.randn(2, 3)
    return X_assess, Y_assess

def initialize_parameters_test_case():
    n_x, n_h, n_y = 2, 4, 1
    return n_x, n_h, n_y

def forward_propagation_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(2, 3)

    parameters = {'W1': np.array([[-0.00416758, -0.00056267],
        [-0.02136196,  0.01640271],
        [-0.01793436, -0.00841747],
        [ 0.00502881, -0.01245288]]),
     'W2': np.array([[-0.01057952, -0.00909008,  0.00551454,  0.02292208]]),
     'b1': np.array([[ 0.],
        [ 0.],
        [ 0.],
        [ 0.]]),
     'b2': np.array([[ 0.]])}

    return X_assess, parameters

def compute_cost_test_case():
    np.random.seed(1)
    Y_assess = np.random.randn(1, 3)
    parameters = {'W1': np.array([[-0.00416758, -0.00056267],
        [-0.02136196,  0.01640271],
        [-0.01793436, -0.00841747],
        [ 0.00502881, -0.01245288]]),
     'W2': np.array([[-0.01057952, -0.00909008,  0.00551454,  0.02292208]]),
     'b1': np.array([[ 0.],
        [ 0.],
        [ 0.],
        [ 0.]]),
     'b2': np.array([[ 0.]])}

    a2 = (np.array([[ 0.5002307 ,  0.49985831,  0.50023963]]))

    return a2, Y_assess, parameters

def backward_propagation_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(2, 3)
    Y_assess = np.random.randn(1, 3)
    parameters = {'W1': np.array([[-0.00416758, -0.00056267],
        [-0.02136196,  0.01640271],
        [-0.01793436, -0.00841747],
        [ 0.00502881, -0.01245288]]),
     'W2': np.array([[-0.01057952, -0.00909008,  0.00551454,  0.02292208]]),
     'b1': np.array([[ 0.],
        [ 0.],
        [ 0.],
        [ 0.]]),
     'b2': np.array([[ 0.]])}

    cache = {'A1': np.array([[-0.00616578,  0.0020626 ,  0.00349619],
         [-0.05225116,  0.02725659, -0.02646251],
         [-0.02009721,  0.0036869 ,  0.02883756],
         [ 0.02152675, -0.01385234,  0.02599885]]),
  'A2': np.array([[ 0.5002307 ,  0.49985831,  0.50023963]]),
  'Z1': np.array([[-0.00616586,  0.0020626 ,  0.0034962 ],
         [-0.05229879,  0.02726335, -0.02646869],
         [-0.02009991,  0.00368692,  0.02884556],
         [ 0.02153007, -0.01385322,  0.02600471]]),
  'Z2': np.array([[ 0.00092281, -0.00056678,  0.00095853]])}
    return parameters, cache, X_assess, Y_assess

def update_parameters_test_case():
    parameters = {'W1': np.array([[-0.00615039,  0.0169021 ],
        [-0.02311792,  0.03137121],
        [-0.0169217 , -0.01752545],
        [ 0.00935436, -0.05018221]]),
 'W2': np.array([[-0.0104319 , -0.04019007,  0.01607211,  0.04440255]]),
 'b1': np.array([[ -8.97523455e-07],
        [  8.15562092e-06],
        [  6.04810633e-07],
        [ -2.54560700e-06]]),
 'b2': np.array([[  9.14954378e-05]])}

    grads = {'dW1': np.array([[ 0.00023322, -0.00205423],
        [ 0.00082222, -0.00700776],
        [-0.00031831,  0.0028636 ],
        [-0.00092857,  0.00809933]]),
 'dW2': np.array([[ -1.75740039e-05,   3.70231337e-03,  -1.25683095e-03,
          -2.55715317e-03]]),
 'db1': np.array([[  1.05570087e-07],
        [ -3.81814487e-06],
        [ -1.90155145e-07],
        [  5.46467802e-07]]),
 'db2': np.array([[ -1.08923140e-05]])}
    return parameters, grads

def nn_model_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(2, 3)
    Y_assess = np.random.randn(1, 3)
    return X_assess, Y_assess

def predict_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(2, 3)
    parameters = {'W1': np.array([[-0.00615039,  0.0169021 ],
        [-0.02311792,  0.03137121],
        [-0.0169217 , -0.01752545],
        [ 0.00935436, -0.05018221]]),
     'W2': np.array([[-0.0104319 , -0.04019007,  0.01607211,  0.04440255]]),
     'b1': np.array([[ -8.97523455e-07],
        [  8.15562092e-06],
        [  6.04810633e-07],
        [ -2.54560700e-06]]),
     'b2': np.array([[  9.14954378e-05]])}
    return parameters, X_assess
2. planar_utils.py
import matplotlib.pyplot as plt
import numpy as np
import sklearn
import sklearn.datasets
import sklearn.linear_model

def plot_decision_boundary(model, X, y):
    # Set min and max values and give it some padding
    x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
    y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
    h = 0.01
    # Generate a grid of points with distance h between them
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    # Predict the function value for the whole grid
    Z = model(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    # Plot the contour and training examples
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    plt.ylabel('x2')
    plt.xlabel('x1')
    plt.scatter(X[0, :], X[1, :], c=np.squeeze(y), cmap=plt.cm.Spectral)


def sigmoid(x):
    s = 1/(1+np.exp(-x))
    return s

def load_planar_dataset():
    np.random.seed(1)
    m = 400 # number of examples
    N = int(m/2) # number of points per class
    D = 2 # dimensionality
    X = np.zeros((m,D)) # data matrix where each row is a single example
    Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue)
    a = 4 # maximum ray of the flower

    for j in range(2):
        ix = range(N*j,N*(j+1))
        t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta
        r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
        X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
        Y[ix] = j

    X = X.T
    Y = Y.T

    return X, Y

def load_extra_datasets():  
    N = 200
    noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)
    noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)
    blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)
    gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None)
    no_structure = np.random.rand(N, 2), np.random.rand(N, 2)

    return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
一个牛人提供的GIS源码(很好 下面文字非本人所写,文件提到的下载的东西我全部放包里了。 最后的礼物:校园多媒体系统和校园WEBGIS系统 为什么说是最后的礼物,大概是因为我突然想这个blog不更新了。为什么呢?可能是今天晚上喝多了酒,呵呵,原因等下一篇中也许会阐述,同时我会对这个blog的文章等做个总结。其实,这两个东西至少我暂时是不大想放出来的,只是觉得反正这里也不更新了,仅仅将这些东西作为礼物吧,再说毕竟这些东西太过于菜菜了。还是先来介绍下最后的两个礼物吧: 校园多媒体系统: 这个大概是今年过年后做的东西了,是给师弟做毕业设计用的。应该讲这也仅仅是电子地图查询系统的更新而已,没有太大的特色,只是做了些比较花的功能而已。 特色一:系统采用了双重数据库,对于如果无法连接SQL Server数据库的情况将提供备用的ACCESS数据库支持。 特色二:系统采用了实时在线更新的方法对软件进行升级,升级仅仅需要设置好服务端以及更新文件列表等即可。 特色三:界面上有所创新,吸取Google的WEB地图的界面,对部分控制条进行显示和隐藏。可以看我以前的截图,做了个界面,请大家PP http://www.cnblogs.com/Tangf/archive/2006/03/16/351640.html 特色四:简单的加密方式也可以学习下。这个加密方式可以对移植性进行控制。 特色五:移植性强,许多东西没有写死,只需要改变设置文件、启动画面文件、地图文件和数据库文件即可成为一套全新的系统。 开发环境:Visual Basic 6.0,MAPX5.02中文版,ACCESS,SQL SERVER 2000,AutodeskExpressViewe3.1、Windows Media Player 9.0等。 下载地址:http://www.cnblogs.com/Files/Tangf/Campus_Multimedia_Infomation_System_Source.rar 压缩包中为源代码和生成的程序,同时还赠送了一个基于SF6的MAPX打包文件以及整个校园的地图文件,提供了开放环境中需要的插件支持文件(System目录下),同时由于文件大小原因,删除了许多Img目录下的图片并且在数据库中删除了部分Img记录(不然会出错),仅保留了1号楼的图片供参考。 相关或参考文章: 电子地图查询系统_v1.0_源代码(VB6+MAPX5) http://www.cnblogs.com/Tangf/archive/2006/02/15/331375.htmlGoogle ┕电子地图查询系统源代码:http://www.cnblogs.com/Files/Tangf/MapSearch_Source.rar 用SetupFactory打包MapX(带打好的包和打包文档以及录像) http://www.cnblogs.com/Tangf/archive/2006/02/05/325842.html ┕打包以及文档和录像:http://www.cnblogs.com/Files/Tangf/Mapx_Pack.rar 再谈MAPX打包以及MAPX的安装 http://www.cnblogs.com/Tangf/archive/2006/05/31/414361.html 校园WEBGIS: 这个应该是05年的时候做的毕业设计,用超图的Supermap IS 2003+SQL Server 2000建立的一个比较的简单的系统,只是玄乎了下就变的有点意思了,甚至也有点学习或者创新的意思。 加上上次发布的论文部分,这样整个系统也算是补全了。原来论文部分请见:校园WebGIS开发与实践(论文部分) http://www.cnblogs.com/Tangf/archive/2006/01/13/316918.html 特色一:提出了地图接口的概念(其实当时的想法是将网络上的所谓企业标注移植到了这个系统上,只是这个功能免费提供给了学校的部门使用)。 特色二:部分搜索功能是通过搜索SQL输出XML来实现。 特色三:系统已经详细到每个楼房楼的办公室以及办公室内的电话和教师名单、教学楼的班级以及课程表、宿舍的成员组成联系方式等。 特色四:空间数据库和属性数据库通过SQL Server的视图功能实现关联。 开发环境:Supermap Desktop 2003(地图编辑工具),Supermap IS 2003(GIS服务端),ASP+SQL Server 2000(开发语言和数据库环境),IIS 5.0(WEB服务端),AutodeskExpressViewe3.1(Autodesk公司发布的浏览DWF文件的的客户端插件)等。 安装方法请见论文的附录部分,请不要再询问如何安装。 由于当时将每个楼平面图的CAD数据也同时存入了SQL Server,所以导致数据库文件过于庞大,大概90M多,经过压缩大概21.8M左右。由于文件过大没有地方存放,所以这部分也不提供。所以可能会导致系统功能无法实现。数据库不提供,请不要索取。 下载地址:http://www.cnblogs.com/Files/Tangf/Campus_WebGIS_Source.rar 压缩包中为WEB主程序,以及答辩用的演讲稿。 相关或参考文章: 校园WebGIS开发与实践(论文部分) http://www.cnblogs.com/Tangf/archive/2006/01/13/316918.html ┕校园WEBGIS的论文下载:http://www.cnblogs.com/Files/Tangf/Campus_WebGIS.rar 由于各种原因,压缩包中已经删除了无关紧要的楼平面图的DWF部分。同时由于文件大小原因,AutodeskExpressViewe3.1程序也没有提供,请从网上下载。 特别说明:两个程序中已经提供了比较完整的数据和代码,可以复制、修改、传播,传播情保证文件完整性,并且包含Readme文件同时注明出处,但禁止用于商业用途。谢谢。 但愿我的礼物能够给您带来一些帮助。 ==================================================================== 公告:Rover's Official Blog停止更新 想了几天,终于决定写这么一个公告了。并不是因为写些东西太累或者太占时间而停止了更新,也许就如同前文说是因为今天喝多了酒(呵呵,玩笑),也许如同MSN副标题所言:严重的压力和抑郁,强烈的人格分裂和精神分裂,等待崩溃(呵呵,又一个玩笑)。可能是觉得写的东西没什么水准,并且也不能时常的更新,加上个人感觉自己技术的下降(呵呵,也许本来就没有什么技术),考虑甚多,终于作了这么个决定:Rover's Official Blog停止更新 同时停止更新的是Rover's GIS Blog,是3snews上面的Blog,不过上面的基本上也都是本站的复制。生活类Blog会不定时更新,停靠在了Space和新浪,由于关系自己暴露隐私等问题,所以本文不详细提供连接地址。从元旦开博到现在也已经八个月的时间了,发了40多篇的随笔和0篇的文章,非常开心能够在博客园作为我的主blog的停靠站,能够让我在这里结识这么多的朋友,并同他们交流,让我学到甚多、收益菲浅,非常的感谢博客园感谢大家。 也许我还会回来,说不定有一天我会发公告说本Blog重新开始更新,很有可能的事情。希望这段日子能够安静些,能够思考更多些,能够明确些方向,能够做出些实质性的东西,能够提高些自身的技术能力。非常的希望,不知道能否实现。 也许我也会偶然的更新一下本日志,大概是在有东西发布或者有好东西同大家分享的情况下吧。不过这篇日志就置顶了吧。 正准备经营的东西,希望能够得到大家的帮助,非常的感谢: www.gpsplayer.cn:GPS玩家。GPS资讯类网站。类似一个简单的新闻系统,加上一些简单的留言板等等功能,可能会添加一些Gmap API开发类的内容。 www.wikish.cn:维基上海。有了点想法和思路,但暂时由于技术能力等原因无法实现。 其他:还有两个玉米没有想好(呵呵)。 由于个人比较自私,所以想法上即使有所创意也不大会和大家分享(请见谅),加上自身没有技术,所以个人基本上是宁烂也不实现或者让别人实现(是有点自私了)。请原谅我的自私,Google是有创意的,但他的技术壁垒是他人所无法逾越的,而我即使有创意也没有任何技术壁垒,所以不讲了。加上大陆地区太多的炮制太另人失望了(去年非常红火的百万首页,在大陆地区做的烂的一塌,只会炮制没有几个是有创意或者在人家创意的基础上增加自己创意的,唉)。 非常的希望大家能够给我意见或者建议,对大家提供的帮助非常的感谢。 如果您对这一段有想法或者其他愿意和我交流,那么请给我mail。谢谢。 我的联系方式和需要注意的地方: E-mail:[email protected](基本上是每天晚上登陆一次) MSN:[email protected](基本上是开机登陆,不过状态一般为忙碌,Mail会不定时登陆) Gmail:[email protected](基本上是两三天登陆一次,Gtalk则不定时登陆了) QQ:65985498(基本上是每天晚上隐身登陆一次,并且一般在十分钟内关闭) 以后的联系通过E-Mail联系,谢绝一切的及时通讯工具,请尽量不要添加我为好友,包括QQ/MSN/Gtalk,如果您发的Mail足够的诚恳并且也足够的值得聊天的理由,那么我会添加你的。不希望通过聊天的方式来解决问题,聊了半天的问题最后做公安局调查户口的事情了(呵呵,说的严重了),或者说是聊了半天后就无聊了然后再也不聊了,多么的没有意思。我倒还是很愿意花上十分钟的时间来阅读您的Mail并将我知道的所答复给您。当然如果有邮件不回复,那么基本上我是不懂而无法回答或者觉得没有任何答复的价值,请多多的包涵。 以前写的部分日志以及提供的下载文件整理: 最后的礼物:校园多媒体系统和校园WEBGIS系统 http://www.cnblogs.com/Tangf/archive/2006/08/05/468257.html ┕校园多媒体系统源代码下载:http://www.cnblogs.com/Files/Tangf/Campus_Multimedia_Infomation_System_Source.rar ┕校园WEBGIS系统源代码下载:http://www.cnblogs.com/Files/Tangf/Campus_WebGIS_Source.rar Google卫星地图的URL计算 http://www.cnblogs.com/Tangf/archive/2006/07/23/457902.html 两点坐标间距离的算法以及验证 http://www.cnblogs.com/Tangf/archive/2006/07/23/457884.html 极索(Gsuo)推出新版地图采用Gmap设计思路 http://www.cnblogs.com/Tangf/archive/2006/07/23/457521.html 浅谈LBS(基于位置的服务) http://www.cnblogs.com/Tangf/archive/2006/07/17/452498.html MapBar地图更新啦 http://www.cnblogs.com/Tangf/archive/2006/07/13/450215.html 推荐一款软件:Global Mapper http://www.cnblogs.com/Tangf/archive/2006/07/11/448411.html 51ditu、清华地图以及Google地图 http://www.cnblogs.com/Tangf/archive/2006/07/02/440953.html 计算最近点和最近线段 http://www.cnblogs.com/Tangf/archive/2006/07/01/440311.html ┕最近点和最近线段算法示例代码(脱离MAPX5,VB6实现):http://www.cnblogs.com/Files/Tangf/neardis_new.rar Garmin Nuvi 350试用手记 http://www.cnblogs.com/Tangf/archive/2006/06/17/428045.html ┕全文下载(供转载专用):http://www.cnblogs.com/Files/Tangf/Nuvi350.rar MapBar中坐标的加密和解密(JS实现) http://www.cnblogs.com/Tangf/archive/2006/06/06/419124.html 发现一个SVG做的地图网站:ChinaQuest http://www.cnblogs.com/Tangf/archive/2006/06/04/417110.html boot.ini文件的修复 http://www.cnblogs.com/Tangf/archive/2006/06/04/416915.html 再谈MAPX打包以及MAPX的安装 http://www.cnblogs.com/Tangf/archive/2006/05/31/414361.html 寻找MapBar的地图切割方法 http://www.cnblogs.com/Tangf/archive/2006/05/28/411397.html ┕我自己切割的Mapbar地图,并且可以在本地运行:http://www.cnblogs.com/Files/Tangf/MapBar_My.rar 已知一点求最近点(问题请教) http://www.cnblogs.com/Tangf/archive/2006/05/28/411182.html ┕求最近点示例代码(基于MAPX5,VB6实现):http://www.cnblogs.com/Files/Tangf/neardis.rar 基于数据库的公交换乘算法(一点思路一点问题) http://www.cnblogs.com/Tangf/archive/2006/05/28/411065.html MapInfo/ArcInfo交流(提问解答,不定时更新) http://www.cnblogs.com/Tangf/archive/2006/05/09/395489.html (收集)Shape转KML工具(更新:Google正式收购SketchUp) http://www.cnblogs.com/Tangf/archive/2006/04/26/386092.html ┕两个SHape转KML工具:http://www.cnblogs.com/Files/Tangf/shape2kml.rar 地图投影 http://www.cnblogs.com/Tangf/archive/2006/04/17/377638.html 容器透明(如PictureBox) http://www.cnblogs.com/Tangf/archive/2006/04/05/367885.html Google地图切割以及类似Google的开源API http://www.cnblogs.com/Tangf/archive/2006/03/29/362110.html 获取字符串中的指定位置的子字符串 http://www.cnblogs.com/Tangf/archive/2006/03/25/358311.html 做了个界面,请大家PP http://www.cnblogs.com/Tangf/archive/2006/03/16/351640.html [存点资料]车载导航电子地图走向标准化 http://www.cnblogs.com/Tangf/archive/2006/03/04/342733.html [ZT]谈谈 wiki 的缺点 http://www.cnblogs.com/Tangf/archive/2006/03/01/340725.html [转贴]Web地图服务:GIS走近你我 http://www.cnblogs.com/Tangf/archive/2006/02/23/336493.html 算我给Google本地和E都市做个广告吧 http://www.cnblogs.com/Tangf/archive/2006/02/18/333076.html 电子地图查询系统_v1.0_源代码(VB6+MAPX5) http://www.cnblogs.com/Tangf/archive/2006/02/15/331375.htmlGoogle ┕电子地图查询系统源代码:http://www.cnblogs.com/Files/Tangf/MapSearch_Source.rar 地图的配色问题(以及MapBar和51ditu) http://www.cnblogs.com/Tangf/archive/2006/02/12/329162.html [分享]上海市样图 http://www.cnblogs.com/Tangf/archive/2006/02/08/327310.html ┕上海市样图:http://www.cnblogs.com/Files/Tangf/Map_SH.rar 用SetupFactory打包MapX(带打好的包和打包文档以及录像) http://www.cnblogs.com/Tangf/archive/2006/02/05/325842.html ┕打包以及文档和录像:http://www.cnblogs.com/Files/Tangf/Mapx_Pack.rar ArcGIS9、MapObject2.2和ArcExplorer2.0连接ArcSDE9.0问题 http://www.cnblogs.com/Tangf/archive/2006/01/26/323698.html MapBar和MapInfo中的比例尺[更新:MapBar比例尺是正确的] http://www.cnblogs.com/Tangf/archive/2006/01/24/322854.html MapBar研究(百度地图中的JS部分) http://www.cnblogs.com/Tangf/archive/2006/01/22/321756.html ┕本地浏览,调用远程图片:http://www.cnblogs.com/Files/Tangf/MapBar_baidu.rar 浅谈WEBGIS运用栅格地图实现原理[更新:Google Maps带来的新型WebGIS设计模式] http://www.cnblogs.com/Tangf/archive/2006/01/14/317327.html 校园WebGIS开发与实践(论文部分) http://www.cnblogs.com/Tangf/archive/2006/01/13/316918.html ┕校园WEBGIS的论文下载:http://www.cnblogs.com/Files/Tangf/Campus_WebGIS.rar MapInfo中按区域分割地图的方法(带MapBasic方法) http://www.cnblogs.com/Tangf/archive/2006/01/13/316363.html MIFtoSHP通用转换工具 http://www.cnblogs.com/Tangf/archive/2006/01/06/312654.html ┕MIFtoSHP通用转换工具:http://www.cnblogs.com/Files/Tangf/MIFtoSHP.rar MIFtoTAB and TABtoMIF(MIF和TAB互转小工具) http://www.cnblogs.com/Tangf/archive/2006/01/01/309375.html ┕MIFandTAB互转工具:http://www.cnblogs.com/Files/Tangf/MIFandTAB.rar 『浪人|努力』唐丰,Rover.Tang 2006.08.05

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值