D. The Number of Pairs
题意
t次询问中
输入c,d,x
求满足 c * lcm(a,b) - d * gcd(a,b) = x
a,b的个数。
1 <= t <= 1e4
1 <= c,d,x <= 1e7
思路
c * lcm(a,b) - d * gcd(a,b) = x
转换为
c * (a * b / gcd(a,b)) - d * gcd(a,b) = x
同除gcd(a,b)
c * (a * b / (gcd(a,b) * gcd(a,b))) = x / gcd(a,b) + d
u = a / gcd(a,b) 和 v = b / gcd(a,b) 是互质的,k = x / gcd(a,b) + d
可以枚举x的因子,求k是否为c的倍数,是的话保证两个数相乘等于 k / c,且互质,也就是k/c的质因子要么属于a,要么属于b 方案数为(2 ^(k/c的质因子个数) )。
1e7 每个数质因子的个数可以使用朴素算法,时间为nloglogn 只用预处理
枚举时间复杂度为 根号x
总体时间复杂度为 max(nloglogn,t * 根号x);
代码
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<unordered_set>
#include<unordered_map>
using namespace std;
#define x first
#define y second
//#define int long long
typedef pair<int ,int > PII;
typedef long long ll;
const int N = 2e7 + 10;
int cnt[N];
ll ans = 0;
ll get(int x,int a,int b){
x += b;
if(x % a) return 0;
x /= a;
return (1ll << cnt[x]);
}
int main(){
for(int i = 2;i < N;i++){
if(cnt[i]) continue;
for(int j = i;j < N;j += i)
cnt[j] ++;
}
int T;
cin >> T;
while(T--){
ans = 0;
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
for(int i = 1;i <= c / i;i++){
if(c % i) continue;
ans += get(i,a,b);
if(i != c / i){
ans += get(c / i,a,b);
}
// cout << i << ' ' << ans << endl;
}
printf("%lld\n",ans);
}
return 0;
}