Educational Codeforces Round 106 (Rated for Div. 2)

D. The Number of Pairs

题意

t次询问中
输入c,d,x
求满足 c * lcm(a,b) - d * gcd(a,b) = xa,b的个数。

1 <= t <= 1e4
1 <= c,d,x <= 1e7

思路

c * lcm(a,b) - d * gcd(a,b) = x转换为
c * (a * b / gcd(a,b)) - d * gcd(a,b) = x同除gcd(a,b)
c * (a * b / (gcd(a,b) * gcd(a,b))) = x / gcd(a,b) + d
u = a / gcd(a,b) 和 v = b / gcd(a,b) 是互质的,k = x / gcd(a,b) + d
可以枚举x的因子,求k是否为c的倍数,是的话保证两个数相乘等于 k / c,且互质,也就是k/c的质因子要么属于a,要么属于b 方案数为(2 ^(k/c的质因子个数) )。
1e7 每个数质因子的个数可以使用朴素算法,时间为nloglogn 只用预处理
枚举时间复杂度为 根号x
总体时间复杂度为 max(nloglogn,t * 根号x);

代码

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<unordered_set>
#include<unordered_map>

using namespace std;
#define x first
#define y second
//#define int long long
typedef pair<int ,int > PII;
typedef long long ll;
const int N = 2e7 + 10;
int cnt[N];
ll ans = 0;
ll get(int x,int a,int b){
	x += b;
	if(x % a) return 0;
	x /= a;
	return (1ll << cnt[x]);
}

int main(){
	for(int i = 2;i < N;i++){
		if(cnt[i]) continue;
		for(int j = i;j < N;j += i)
			cnt[j] ++;
	}
	int T;
	cin >> T;
	while(T--){
		ans = 0;
		int a,b,c;
		scanf("%d%d%d",&a,&b,&c);
		for(int i = 1;i <= c / i;i++){
			if(c % i) continue;
			ans += get(i,a,b);
			if(i != c / i){
				ans += get(c / i,a,b);
			}
//			cout << i << ' ' << ans << endl;
		}
		printf("%lld\n",ans);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值