文章提出了一种新的增强布谷鸟搜索(ECS)算法,通过优化局部/全局变换(LGE)参数实现图像对比度增强。此外,对局部/全局增强(LGE)变换中需要优化的参数提出了新的搜索空间范围。
图像的对比度增强: 通过增加图像的动态强度范围来突出图像的细节。图像的对比度揭示了图像中物体和背景之间灰度值的差异。
对比度增强的方法:
- 基于非线性函数的灰度变换,如对数、幂律、伽马函数;
- 基于直方图的技术;
- 非线性二次滤波;
- 基于频率域的方法,如同态滤波。
- 基于进化计算的优化算法,自动化对比度增强任务。用于找到最佳参数设置或最佳输入/输出映射,从而产生最佳质量的图像。
布谷鸟搜索算法(CS): 布谷鸟将蛋产在另一只鸟的巢中作为繁殖策略。寄主鸟有可能发现布谷鸟的蛋,可能性称之为放弃概率。发现后寄主鸟建立新的巢穴或者扔掉蛋。CS算法是一个迭代过程,布谷鸟一次下一个蛋,其搜索的目的是用新的更好的蛋替换原来的巢穴的蛋(解),布谷鸟蛋找到能成功在其他鸟巢成功孵化这个过程就是寻优过程。
CS算法比GA和PSO等算法效率更高,因为CS算法使用的是lsamvy飞行随机行走而不是各向同性随机行走,并且只需要调整一个参数,即放弃概率Pa。
局部/全局增强(LGE)变换: 使用了图像的局部统计信息,如均值、方差和全局图像信息。在位置(u, v)处对大小为M × N的图像的每个像素进行T.LGE变换,将旧的强度f (u, v)映射为新的强度值g(u, v)。
f(u,v)像素,o(u,v)标准差,m(u,v)均值,Gm全局均值
变换T.LGE有4个未知参数(a, b, c, k)这些参数会在处理后的图像中产生较大的变化,不同的作者给出的这些参数的搜索范围不同,影响了增强图像的质量。
全局增强变换: T.GE是一个映射函数,它可以表示为一个查找表,有L个位置包含图像灰度值,其中使用优化算法获得最优值。在原始图像中,图像的最低灰度值为8,图像的最高灰度值为230。GE中的第一步是设置g1 = 0, g10 = 255。其余的灰度值使用优化算法获得,例如GA, CS或ECS。
目标函数: 为了在没有外界干预的情况下自动测量增强图像的质量,需要一个目标函数。
H(Ie)和E(Ie)分别为增强图像Ie的熵和边缘强度之和。
选择这个函数的原因是一个好的对比度图像应该有更多的边缘,更大的边缘强度和更高的熵。
搜索过程(ECS):
文章利用贪婪选择方法增强了标准布谷鸟搜索算法的强度,以确保找到最优解。在ECS中,在每一代中,新的解决方案生成两次。首先,通过lsamvy飞行产生,其次,通过贪婪选择方法(ABC中的选择方法)来增强其搜索最优解的能力。
算法比较:
对多张低对比度图与CS算法进行性能比较;使用LGE/GE变换与ABC算法比较,据作者描述较优。
来源:A novel enhanced cuckoo search algorithm for contrast enhancement of gray scale images