本地部署deepseek或其它语言模型(Windows,Ollama,Chatbox AI),这样就不用担心数据泄露了


前言

不知道小伙伴们,有没有遇到这样一些问题:
我在deepseek中问的问题会泄露我的隐私吗?
我又该怎么使用其他的语言模型呢?
别担心,这篇文章可以解决这些问题。


静音演示视频

我也做了一个视频,帮助大家更好地理解文章。(第一次做视频,不会配音,也有点模糊,实在抱歉,后续会更新)

CSDN文章配套视频(静音)


一、Ollama

1.下载Ollama

(1)进入Ollama官网

点击https://ollama.com/download,即可进入Ollama下载页面。

在这里插入图片描述

(2)问题解决:无法下载

在这里插入图片描述
解决方法一:换手机热点,重新下载。
解决方法二:使用我提供的阿里网盘链接,里面有Ollama的安装包。
提取码: 18rh
https://www.alipan.com/s/DRdDDxhMPjc

2.下载deepseek模型

(1)打开终端

方法一:按win + R,输入cmd,点击确定。

在这里插入图片描述

方法二:在搜索框中输入,cmd,按回车键。

在这里插入图片描述

(2)模型下载命令

在终端中输入以下命令:

ollama run deepseek-r1:1.5b

在这里插入图片描述
回车,等待即可。

(3)问题解决:加载模型卡住,一直在循环

在这里插入图片描述
解决方法一:在终端,按Ctrl + C退出加载,再重新输入以下命令,重新加载deepseek-r1模型。

ollama run deepseek-r1:1.5b

解决方法二:在终端,输入以下命令,先卸载deepseek-r1模型,再重新下载deepseek-r1模型。

ollama rm deepseek-r1:1.5b
ollama run deepseek-r1:1.5b

(4)可以在终端问问题啦,但这样不够优雅

在“Send a message (/? for help)"中输入你想要问的问题。

在这里插入图片描述
在这里插入图片描述

到了这一步,模型就已经部署完成了,但这样一直在终端问问题,不够优雅,也不方便,所以我们可以使用Chatbox AI作为语言模型的交互界面。当然如果你喜欢在终端问问题,你只需将Ollama的部分看完即可,不需要再看第二章Chatbox AI的部分。

3.下载其他语言模型

我们可以在Ollama的官网上https://ollama.com,查看有哪些语言模型,以及其对应的大小和下载方式。

在这里插入图片描述
vision中的1b,4b等是指语言模型的参数量,b是billion(十亿)的缩写,1b指这个模型有10亿个参数,所以数值越大,模型的体积也越大,需要的储存空间以及算力也就越高,大家可以根据自己的电脑性能来安装合适的模型。
保险起见,大家可以把各个大小的模型都下载下来,测试一下。当然20b以上的模型,就不用下了,太大了,个人电脑跑不动的,这需要服务器去跑。

在这里插入图片描述
我这里也提供了一些模型的下载命令,gemma3是由谷歌推出的模型,llama3.2是由MetaAI推出的模型

ollama run gemma3:1b
ollama run llama3.2:1b

在这里插入图片描述

4.查看已下载的语言模型

在终端输入以下命令:

ollama list

在这里插入图片描述

5.删除已下载的语言模型

如果要卸载已下载的语言模型,在终端输入的命令要遵循以下格式:

ollama rm 模型名称

比如:

ollama rm gemma3:1b

在这里插入图片描述

二、Chatbox AI

1.下载Chatbox AI

点击https://chatboxai.app/zh,即可进入Chatbox AI官网。

在这里插入图片描述

2.配置Ollama的API

在Chatbox AI中,配置好Ollama的API,这样Chatbox AI就可以访问Ollama的语言模型了。当然,可能有人会疑惑,API是什么?它的全称为应用程序编程接口(Application Programming Interface),你可以把它当成软件版的USB插口,配置好正确的API地址,就好比将USB线连接到正确的设备,之后就可以进行通信啦。

在这里插入图片描述

3.切换模型

可以在右下角切换你所需要的模型。

在这里插入图片描述

三、尽情地问问题吧

同样的问题,不同的模型,可能会有不同的回答,所以切换合适的模型是必要的。

在这里插入图片描述
在这里插入图片描述


总结

以上就是今天要讲的所有内容啦,本文仅仅简单介绍了Ollama与Chatbox AI的安装与使用,但是呢,Ollama本体以及语言模型的安装位置都是默认C盘的,想必,有的小伙伴已经在纠结了吧,如果要更改他们的安装位置,可以看我的下一篇文章《将Ollama本体移动到其它盘,同时更改Ollama语言模型的下载路径》
同时,最近网上在传Ollama存在一定安全隐患,但不用担心,这篇文章《解决Ollama的安全隐患,禁止外网访问本地部署的Ollama语言模型(Windows)》有解决办法。

### 部署环境准备 对于希望在本地环境中部署 DeepSeek 使用 ChatboxOllama 的用户来说,准备工作至关重要。确保操作系统兼容性是首要考虑的因素之一,在 Mac 上可以通过特定指南来简化这个过程[^2]。 ### 安装 Ollama Ollama 是用于提供 API 接口的服务端组件,允许开发者通过编程方式访问和操作 DeepSeek 模型。安装前需确认服务器满足最低硬件需求,并按照官方文档指引完成必要的依赖库配置。一旦这些前提条件得到满足,则可通过包管理器直接下载二进制文件来进行安装。 ### 设置 DeepSeek 模型 成功安装 Ollama 后,下一步便是加载预训练好的 DeepSeek 模型。这通常涉及到从远程仓库拉取最新版本的模型权重以及相应的元数据。根据具体应用场景的不同,可能还需要调整一些参数以优化性能表现。此部分的具体实施细节可以在相关技术博客中找到详细的说明[^1]。 ### 配置 Chatbox 用户界面 为了让最终用户体验更加友好,建议集成图形化的前端应用——Chatbox。该应用程序不仅提供了直观易用的消息传递风格界面,还内置了对多种主流自然语言处理框架的支持。前往官方网站 (https://chatboxai.app/zh)[^3] 可获取适用于不同平台的安装包;安装完毕之后,只需简单几步就能连接到已搭建好的后端服务,从而开启个性化的对话体验。 ```bash # 示例:启动 Ollama 服务 $ ollama start # 进入 Chatbox 应用程序目录 $ cd path/to/chatbox # 启动 Chatbox GUI 界面 $ ./chatbox ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风暴智能

谢谢你,你的鼓励是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值