人工智能
文章平均质量分 75
霖承科技 LinChance
这个作者很懒,什么都没留下…
展开
-
Task4 神经网络
神经元模型神经网络中最基本的成分是神经元(neuron)模型,在生物神经网络中,每个神经元与其他神经元相连,当它“兴奋”时,就会向相连的神经元发送化学物质,从而改变这些神经元内的电位;如果某神经元的电位超过了一个“阈值”(threshold),那么它就会被激活,即“兴奋”起来,向其他神经元发送化学物质.M-P 神经元模型一种模拟生物行为的数学模型,接受n个输入(通常来自其他神经元),并给各个输入赋予权重计算加权和,然后与自身阈值θ \thetaθ进行比较(作差),最后经过激活函数(大于..原创 2022-05-30 01:47:07 · 93 阅读 · 0 评论 -
Task3 决策树
4 决策树多用于集成学习,森林算法原理[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-aOhtViEy-1653584691616)(https://assets.b3logfile.com/siyuan/1640183531201/assets/image-20220527002810-k7ys4q8.png)]让判断条件更加精确,考虑更多的情况信息熵(自信息的期望):度量随机变量X的不确定性,信息熵越大越不确定,其含有的信息量越多。联合熵: 观察一个多原创 2022-05-27 01:06:32 · 155 阅读 · 0 评论 -
第三章 线性模型
第三章 线性模型线性回归旨在学得一个线性模型以尽可能来预测出其对应的 连续值 ,通过对预测值和真实值之间,尽可能缩小其欧氏距离。一元线性回归正交回归:点到直线的垂直距离最短线性回归:均方误差最小直线 平行于y轴到直线最短的距离最小二乘法极大似然估计多元线性回归从一般的线性回归模型,到映射在n维空间上的多元线性回归,可以通过矩阵的形式表示出来对数几率回归又叫做逻辑回归,比如说将二分类的问题的结果转化为0-1上的值的输出,用来处理分类问题的算法。线性判别分原创 2022-05-24 01:00:27 · 116 阅读 · 0 评论 -
机器学习 第一章和第二章
什么是机器学习?在计算机上从数据中产生“模型”的算法(学习算法),将经验数据提供给它,基于数据(通过学习)产生模型(学习后的)。在面对新问题时,模型会提供相应的判断。先有模型,再学习,学好就可以用了基本术语数据集训练集:在训练模型过程中用到的数据模型:又称为学习,学习时为了找出或逼近真相预测模型:光有示例数据还不够,需要有标记信息(结果数据)分类:预测的离散值(好坏等)回归:预测的连续值(具体数值,有连续性)二分类:对只涉及两个类别的 “二分类"任务,通常称其中一个类为..原创 2022-05-18 00:15:47 · 209 阅读 · 0 评论 -
泰坦尼克号 第三章 模型搭建和评估
第三章 模型搭建和评估–建模经过前面的两章的知识点的学习,我可以对数数据的本身进行处理,比如数据本身的增删查补,还可以做必要的清洗工作。那么下面我们就要开始使用我们前面处理好的数据了。这一章我们要做的就是使用数据,我们做数据分析的目的也就是,运用我们的数据以及结合我的业务来得到某些我们需要知道的结果。那么分析的第一步就是建模,搭建一个预测模型或者其他模型;我们从这个模型的到结果之后,我们要分析我的模型是不是足够的可靠,那我就需要评估这个模型。今天我们学习建模,下一节我们学习评估。我们拥有的泰坦尼克号的数原创 2022-03-25 00:55:23 · 2643 阅读 · 0 评论 -
泰坦尼克号 数据重构 + 可视化
复习:在前面我们已经学习了Pandas基础,第二章我们开始进入数据分析的业务部分,在第二章第一节的内容中,我们学习了数据的清洗,这一部分十分重要,只有数据变得相对干净,我们之后对数据的分析才可以更有力。而这一节,我们要做的是数据重构,数据重构依旧属于数据理解(准备)的范围。# 导入基本库import numpy as npimport pandas as pd# 载入data文件中的:train-left-up.csvdf = pd.read_csv('DataWhale教程/data/trai原创 2022-03-20 01:27:57 · 2340 阅读 · 0 评论 -
Kaggle —— 泰坦尼克号
赛题介绍简介使用机器学习创建一个模型,预测哪些乘客在泰坦尼克号沉船事故中幸存下来。泰坦尼克号的沉没是历史上最臭名昭著的沉船之一。1912年4月15日,在她的处女航中,被广泛认为"不沉"的"泰坦尼克号"在与冰山相撞后沉没。不幸的是,船上的每个人都没有足够的救生艇,导致2224名乘客和船员中有1502人死亡。虽然生存中有一些运气因素,但似乎有些群体比其他群体更有可能生存下来。在这个挑战中,我们要求您建立一个预测模型,回答以下问题:"什么样的人更有可能生存?"使用乘客数据(即姓名,年龄,性别,社原创 2022-03-18 00:40:08 · 310 阅读 · 0 评论 -
Numpy&Pandas&Matploty
Numpy矩阵计算和操作矩阵用空格隔开,不是逗号可以直接通过下标索引(从0开始),第一个是行,第二个是列可以通过切片遍历# 导入包import numpy as np# 转换为矩阵array = np.array([[1,2,3],[2,3,4]])# 输出矩阵print(array)# 输出矩阵的维度(一维矩阵还是二维矩阵)print(array.ndim)# 输出矩阵的列数和行数print(array.shape)# 输出矩阵的大小(一共有多少元素)print(arr原创 2022-03-18 00:38:54 · 1715 阅读 · 0 评论 -
泰坦尼克号 Notebook
# 导入库# 将 numpy 和 pandas 导入并命名为np、pdimport numpy as npimport pandas as pd# 使用相对路径导入csv数据,并df = pd.read_csv('train.csv')# 展示数据的前三行 —— 观察数据print(df.head(3)) PassengerId Survived Pclass \0 1 0 3 1 2原创 2022-03-18 00:36:42 · 1592 阅读 · 0 评论 -
泰坦尼克号 第一章
泰坦尼克号0 第零章:比赛介绍使用机器学习创建一个模型,预测哪些乘客在泰坦尼克号沉船事故中幸存下来。泰坦尼克号的沉没是历史上最臭名昭著的沉船之一。1912年4月15日,在她的处女航中,被广泛认为"不沉"的"泰坦尼克号"在与冰山相撞后沉没。不幸的是,船上的每个人都没有足够的救生艇,导致2224名乘客和船员中有1502人死亡。虽然生存中有一些运气因素,但似乎有些群体比其他群体更有可能生存下来。在这个挑战中,我们要求您建立一个预测模型,回答以下问题:"什么样的人更有可能生存?"使用乘客数据(即姓.原创 2022-03-15 23:27:08 · 958 阅读 · 0 评论