第三章 模型搭建和评估–建模
经过前面的两章的知识点的学习,我可以对数数据的本身进行处理,比如数据本身的增删查补,还可以做必要的清洗工作。那么下面我们就要开始使用我们前面处理好的数据了。这一章我们要做的就是使用数据,我们做数据分析的目的也就是,运用我们的数据以及结合我的业务来得到某些我们需要知道的结果。那么分析的第一步就是建模,搭建一个预测模型或者其他模型;我们从这个模型的到结果之后,我们要分析我的模型是不是足够的可靠,那我就需要评估这个模型。今天我们学习建模,下一节我们学习评估。
我们拥有的泰坦尼克号的数据集,那么我们这次的目的就是,完成泰坦尼克号存活预测这个任务。
# 导入库
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns # 基于matolotlib的可视化库
from IPython.display import Image # 展示图片
from IPython.display import display_html as dis_h # 使用html展示数据
载入这些库,如果缺少某些库,请安装他们
【思考】这些库的作用是什么呢?你需要查一查
- pandas 为 Python 提供高性能,易于使用的数据结构和数据分析工具
- numpy 支持大量的维度数组与矩阵运算
- matplotlib Python的绘图库,与numpy结合使用
- seaborn 基于Python 且非常受欢迎的图形可视化库,在 matplotlib 的基础上,进行了更高级的封装,使得作图更加方便快捷
载入我们提供清洗之后的数据(clear_data.csv),大家也将原始数据载入(train.csv),说说他们有什么不同
ans:清洗数据中 没有姓名列和存活列 文字数据都转换为了数字(方便快速运算)
# 导入数据
data = pd.read_csv('clear_data.csv') # 清洗后的数据
train = pd.read_csv('train.csv') # 原始数据
data.shape,train.shape
((891, 11), (891, 12))
# 观察清洗后的数据和原始数据
print(dis_h(data.head(3))) # 没有姓名和存活列 文字数据都转换为了数字
print(dis_h(train.head(3)))
PassengerId | Pclass | Age | SibSp | Parch | Fare | Sex_female | Sex_male | Embarked_C | Embarked_Q | Embarked_S | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 3 | 22.0 | 1 | 0 | 7.2500 | 0 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 38.0 | 1 | 0 | 71.2833 | 1 | 0 | 1 | 0 | 0 |
2 | 2 | 3 | 26.0 | 0 | 0 | 7.9250 | 1 | 0 | 0 | 0 | 1 |
None
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
None
模型搭建
- 处理完前面的数据我们就得到建模数据,下一步是选择合适模型
- 在进行模型选择之前我们需要先知道数据集最终是进行监督学习(需要有标签进行训练)还是无监督学习(不需要标签进行训练)
- 模型的选择一方面是通过我们的任务来决定的。
- 除了根据我们任务来选择模型外,还可以根据数据样本量以及特征的稀疏性来决定
- 刚开始我们总是先尝试使用一个基本的模型来作为其baseline,进而再训练其他模型做对比,最终选择泛化能力或性能比较好的模型
这里我的建模,并不是从零开始,自己一个人完成完成所有代码的编译。我们这里使用一个机器学习最常用的一个库(sklearn)来完成我们的模型的搭建
下面给出sklearn的算法选择路径,供大家参考
# sklearn模型算法选择路径图
Image('sklearn.png')
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kUzwpzoS-1648140848631)(output_13_0.png)]
【思考】数据集哪些差异会导致模型在拟合数据时发生变化
ans:数据拟合(曲线拟合)根据已知数据,得到与数据拟合的曲线,可以根据曲线的方程对其他未知数进行预测,需要避免曲线过拟合(完全拟合,容错率太低)和欠拟合(容错率太高)造成预测错误
会发生变化的情况:
分情况讨论
- 异常值
- 噪音
- 异常挖掘
Image('fitting.png')
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VH72KFdV-1648140848631)(output_15_0.png)]
任务一:切割训练集和测试集
这里使用留出法划分数据集
训练集用于训练模型,测试集用于评估模型
- 将数据集分为自变量和因变量(训练标签)
- 按比例切割训练集和测试集(一般测试集的比例有30%、25%、20%、15%和10%) —— 根据数量的大小还设定,数据量大,则测试集可以少一点,数量小,则按比例
- 使用分层抽样
- 设置随机种子以便结果能复现
【思考】
- 划分数据集的方法有哪些?
- 留出法
- 交叉验证法
- 自助法
详细:https://www.cnblogs.com/jyroy/p/13547118.html
- 为什么使用分层抽样,这样的好处有什么?
任务提示1
- 切割数据集是为了后续能评估模型泛化能力
- sklearn中切割数据集的方法为
train_test_split
- 查看函数文档可以在jupyter noteboo里面使用
train_test_split?
后回车即可看到 - 分层和随机种子在参数里寻找
from sklearn.model_selection import train_test_split
# 一般先取出X和y后再切割,有些情况会使用到未切割的,这时候X和y就可以用,x是清洗好的数据,y是我们要预测的存活数据'Survived'
X